Spaces:
Sleeping
Sleeping
File size: 8,179 Bytes
224325d f4fc74b 224325d f4fc74b 2f59c4c f4fc74b 224325d ea73162 224325d ea73162 224325d 2f59c4c 224325d f4fc74b 224325d 849ae95 f4fc74b 456ef55 224325d 2f59c4c 224325d ea73162 224325d f4fc74b 224325d f4fc74b 224325d f4fc74b 224325d 849ae95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import requests
check_ipinfo = requests.get("https://ipinfo.io").json()['country']
print("Run-Location-As: ",check_ipinfo)
import gradio as gr
import ollama
# List of available models for selection.
# IMPORTANT: These names must correspond to models that have been either
# Model from run.sh
MODEL_ID_MAP = {
"(Tencent)混元-1.8B-Instruct":'hf.co/bartowski/tencent_Hunyuan-1.8B-Instruct-GGUF:Q4_K_M',
"(阿里千問)Qwen3-4B-Instruct-2507": 'hf.co/bartowski/Qwen_Qwen3-4B-Instruct-2507-GGUF:Q4_K_M',
#"(阿里千問)Qwen3-4B-Thinking-2507": 'hf.co/bartowski/Qwen_Qwen3-4B-Thinking-2507-GGUF:Q4_K_M',
"(HuggingFace)SmolLM2-360M": 'smollm2:360m-instruct-q5_K_M',
"(Meta)Llama3.2-3B-Instruct": 'hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M', # OK speed with CPU
#"(Google)Gemma3n-e2b-it": 'gemma3n:e2b-it-q4_K_M',
"(IBM)Granite3.3-2B": 'granite3.3:2b',
"(Tencent)混元-4B-Instruct": 'hf.co/bartowski/tencent_Hunyuan-4B-Instruct-GGUF:Q4_K_M'
}
# Default System Prompt
DEFAULT_SYSTEM_PROMPT = """Answer everything in simple, smart, relevant and accurate style. No chatty! Besides, pls:
1. 如果查詢是以中文輸入,使用標準繁體中文回答,符合官方文書規範
2. 要提供引用規則依据
3. 如果查詢是以英文輸入,使用英文回答"""
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutral")) as demo:
gr.Markdown(f"## LLM/SLM running with CPU") # Changed title to be more generic
gr.Markdown(f"(Run-Location-As: `{check_ipinfo}`)")
gr.Markdown("Chat with the model, customize its behavior with a system prompt, and toggle streaming output.")
# Model Selection
with gr.Row():
selected_model_label = gr.Radio(
choices=list(MODEL_ID_MAP.keys()),
value=list(MODEL_ID_MAP.keys())[0], # Default to first display name
label="Select Model",
info="Choose the LLM model to chat with.",
interactive=True
)
chatbot = gr.Chatbot(
label="Conversation",
height=400,
type='messages',
layout="bubble"
)
with gr.Row():
msg = gr.Textbox(
show_label=False,
placeholder="Type your message here and press Enter...",
lines=1,
scale=4,
container=False
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
stream_checkbox = gr.Checkbox(
label="Stream Output",
value=True,
info="Enable to see the response generate in real-time."
)
use_custom_prompt_checkbox = gr.Checkbox(
label="Use Custom System Prompt",
value=False,
info="Check this box to provide your own system prompt below."
)
# --- New: System Prompt Options ---
SYSTEM_PROMPT_OPTIONS = {
"Smart & Accurate (Auto TC/EN)": DEFAULT_SYSTEM_PROMPT,
"繁體中文回答":"無論如何,必須使用標準繁體中文回答. Answer everything in simple, smart, relevant and accurate style. No chatty!",
"简体中文回答":"无论如何,必须使用标准简体中文回答. Answer everything in simple, smart, relevant and accurate style. No chatty!",
"English Caht":"You must reply by English. Answer everything in simple, smart, relevant and accurate style. No chatty!",
"Friendly & Conversational":"Respond in a warm, friendly, and engaging tone. Use natural language and offer helpful suggestions. Keep responses concise but personable.",
"Professional & Formal":"Maintain a formal and professional tone. Use precise language, avoid slang, and ensure responses are suitable for business or academic contexts.",
"Elon Musk style":"You must chat in Elon Musk style!",
"Test":"Always detect the user's input language and respond in that same language. Do not translate unless explicitly requested. Answer everything in simple, smart, relevant and accurate style. No chatty!"
}
system_prompt_selector = gr.Radio(
label="Choose a System Prompt Style",
choices=list(SYSTEM_PROMPT_OPTIONS.keys()),
value="Smart & Accurate (Auto TC/EN)",
interactive=True
)
system_prompt_textbox = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=3,
placeholder="Enter a system prompt to guide the model's behavior...",
interactive=False
)
# Function to toggle the interactivity of the system prompt textbox
def toggle_system_prompt(use_custom):
return gr.update(interactive=use_custom)
use_custom_prompt_checkbox.change(
fn=toggle_system_prompt,
inputs=use_custom_prompt_checkbox,
outputs=system_prompt_textbox,
queue=False
)
# Function to update textbox when prompt style changes
def update_prompt_text(selected_key, use_custom):
if not use_custom:
return gr.update(value=SYSTEM_PROMPT_OPTIONS[selected_key])
else:
return gr.update()
system_prompt_selector.change(
fn=update_prompt_text,
inputs=[system_prompt_selector, use_custom_prompt_checkbox],
outputs=system_prompt_textbox,
queue=False
)
# --- Core Chat Logic ---
# This function is the heart of the application.
def respond(history, system_prompt, stream_output, selected_model_name, selected_prompt_key, use_custom_prompt): # Added selected_model_name
"""
This is the single function that handles the entire chat process.
It takes the history, prepends the system prompt, calls the Ollama API,
and streams the response back to the chatbot.
"""
current_selected_model = MODEL_ID_MAP[selected_model_name]
#Disable Qwen3 thinking
if "Qwen3".lower() in current_selected_model:
system_prompt = system_prompt+" /no_think"
# Use selected predefined prompt unless custom is enabled
if not use_custom_prompt:
system_prompt = SYSTEM_PROMPT_OPTIONS[selected_prompt_key]
# The 'history' variable from Gradio contains the entire conversation.
# We prepend the system prompt to this history to form the final payload.
messages = [{"role": "system", "content": system_prompt}] + history
# Add a placeholder for the assistant's response to the UI history.
# This creates the space where the streamed response will be displayed.
history.append({"role": "assistant", "content": ""})
# Stream the response from the Ollama API using the currently selected model
response_stream = ollama.chat(
model=current_selected_model, # Use the dynamically selected model
messages=messages,
stream=True
)
# Iterate through the stream, updating the placeholder with each new chunk.
for chunk in response_stream:
if chunk['message']['content']:
history[-1]['content'] += chunk['message']['content']
# Yield the updated history to the chatbot for a real-time effect.
yield history
# This function handles the user's submission.
def user_submit(history, user_message):
"""
Adds the user's message to the chat history and clears the input box.
This prepares the state for the main 'respond' function.
"""
return history + [{"role": "user", "content": user_message}], ""
# Gradio Event Wiring
msg.submit(
user_submit,
inputs=[chatbot, msg],
outputs=[chatbot, msg],
queue=False
).then(
respond,
inputs=[chatbot, system_prompt_textbox, stream_checkbox, selected_model_label, system_prompt_selector, use_custom_prompt_checkbox], # Pass new inputs
outputs=[chatbot]
)
# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860) |