File size: 4,657 Bytes
c652474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import ollama

# The model name must exactly match what was pulled from Hugging Face
MODEL_NAME = 'hf.co/unsloth/gemma-3-4b-it-qat-GGUF:Q4_K_M'

# --- 1. Default System Prompt ---
DEFAULT_SYSTEM_PROMPT = "Answer everything in simple, smart, relevant and accurate way. No chatty."

# This function is the core of the chatbot. It takes the user's prompt and chat history,
# and then interacts with the Ollama API to get a response.
def predict(message, history, system_prompt, stream_output):
    """
    Main prediction function for the chatbot.
    
    Args:
        message (str): The user's input message.
        history (list): A list of previous chat interactions.
        system_prompt (str): The system prompt to guide the model's behavior.
        stream_output (bool): Flag to enable or disable streaming output.
    """
    
    # --- 2. Support for Chat History ---
    # Reformat the history from Gradio's format to the format expected by the Ollama API
    messages = []
    if system_prompt:
        messages.append({'role': 'system', 'content': system_prompt})

    for user_msg, assistant_msg in history:
        messages.append({'role': 'user', 'content': user_msg})
        messages.append({'role': 'assistant', 'content': assistant_msg})
    
    messages.append({'role': 'user', 'content': message})

    # --- 4. Enable/Disable Streaming ---
    if stream_output:
        # Stream the response from the Ollama API
        response_stream = ollama.chat(
            model=MODEL_NAME,
            messages=messages,
            stream=True
        )
        
        # Yield partial responses to create the streaming effect
        partial_response = ""
        for chunk in response_stream:
            if chunk['message']['content']:
                partial_response += chunk['message']['content']
                yield partial_response
    else:
        # Get the full response from the Ollama API without streaming
        response = ollama.chat(
            model=MODEL_NAME,
            messages=messages,
            stream=False
        )
        yield response['message']['content']


# --- 3. Gradio Interface with Options for System Prompt and Streaming ---
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue")) as demo:
    gr.Markdown(f"# LLM GGUF Chat with `{MODEL_NAME}`")
    gr.Markdown("Chat with the model, customize its behavior with a system prompt, and toggle streaming output.")

    # The main chat interface component
    chatbot = gr.Chatbot(label="Conversation", height=500)
    
    with gr.Row():
        msg = gr.Textbox(
            label="Your Message",
            placeholder="Type your message here and press Enter...",
            lines=1,
            scale=4,
        )

    with gr.Accordion("Advanced Options", open=False):
        with gr.Row():
            stream_checkbox = gr.Checkbox(
                label="Stream Output", 
                value=True,
                info="Enable to see the response generate in real-time."
            )
            use_custom_prompt_checkbox = gr.Checkbox(
                label="Use Custom System Prompt", 
                value=False,
                info="Check this box to provide your own system prompt below."
            )
        
        system_prompt_textbox = gr.Textbox(
            label="System Prompt",
            value=DEFAULT_SYSTEM_PROMPT,
            lines=3,
            placeholder="Enter a system prompt to guide the model's behavior...",
            interactive=False # Initially disabled
        )

    # Function to handle the logic for showing/hiding the custom system prompt textbox
    def toggle_system_prompt(use_custom):
        if use_custom:
            # If the user wants a custom prompt, return the default prompt but make the textbox interactive
            return gr.update(value=DEFAULT_SYSTEM_PROMPT, interactive=True, visible=True)
        else:
            # If the user wants the default, hide the textbox and use the default prompt internally
            return gr.update(value=DEFAULT_SYSTEM_PROMPT, interactive=False, visible=True)

    # Wire up the checkbox to the toggle function
    use_custom_prompt_checkbox.change(
        fn=toggle_system_prompt,
        inputs=use_custom_prompt_checkbox,
        outputs=system_prompt_textbox
    )

    # Connect the message submission to the predict function
    msg.submit(
        predict, 
        [msg, chatbot, system_prompt_textbox, stream_checkbox], 
        chatbot
    )
    msg.submit(lambda: "", None, msg) # Clear the textbox after submission

# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860)