Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import torch | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
SYSTEM_PROMPT = "I need you to generate a structured and detailed caption for the provided video. The structured output and the requirements for each field are as shown in the following JSON content: {\"subjects\": [{\"appearance\": \"Main subject appearance description\", \"action\": \"Main subject action\", \"expression\": \"Main subject expression (Only for human/animal categories, empty otherwise)\", \"position\": \"Subject position in the video (Can be relative position to other objects or spatial description)\", \"TYPES\": {\"type\": \"Main category (e.g., Human)\", \"sub_type\": \"Sub-category (e.g., Man)\"}, \"is_main_subject\": true}, {\"appearance\": \"Non-main subject appearance description\", \"action\": \"Non-main subject action\", \"expression\": \"Non-main subject expression (Only for human/animal categories, empty otherwise)\", \"position\": \"Position of non-main subject 1\", \"TYPES\": {\"type\": \"Main category (e.g., Vehicles)\", \"sub_type\": \"Sub-category (e.g., Ship)\"}, \"is_main_subject\": false}], \"shot_type\": \"Shot type(Options: long_shot/full_shot/medium_shot/close_up/extreme_close_up/other)\", \"shot_angle\": \"Camera angle(Options: eye_level/high_angle/low_angle/other)\", \"shot_position\": \"Camera position(Options: front_view/back_view/side_view/over_the_shoulder/overhead_view/point_of_view/aerial_view/overlooking_view/other)\", \"camera_motion\": \"Camera movement description\", \"environment\": \"Video background/environment description\", \"lighting\": \"Lighting information in the video\"}" | |
class StructCaptioner: | |
def __init__(self, model_path): | |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16, | |
# attn_implementation="flash_attention_2", | |
device_map="cuda", | |
) | |
self.processor = AutoProcessor.from_pretrained(model_path) | |
def __call__(self, video_path): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "video", | |
"video": video_path, | |
"max_pixels": 360 * 420, | |
"fps": 2.0, | |
}, | |
{"type": "text", "text": SYSTEM_PROMPT}, | |
], | |
} | |
] | |
text = self.processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True) | |
inputs = self.processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
**video_kwargs, | |
) | |
inputs = inputs.to("cuda") | |
generated_ids = self.model.generate(**inputs, max_new_tokens=2048, temperature=0.05) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_texts = self.processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
caption = json.loads(output_texts[0]) | |
caption = json.dumps(caption, indent=4, ensure_ascii=False) | |
return caption | |