Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,993 Bytes
9a00163 7199a93 9a00163 00ad5ed 9a00163 ad7a819 9a00163 cc7c8f0 b3c5e1f cc7c8f0 b3c5e1f cc7c8f0 9a00163 2be8c6b 9a00163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
import math
from PIL import Image
from typing import List, Optional
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL, BitsAndBytesConfig
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
from unipicv2.stable_diffusion_3_conditioner import StableDiffusion3Conditioner
import spaces
class UniPicV2Inferencer:
def __init__(
self,
model_path: str,
qwen_vl_path: str,
quant: str = "int4", # {"int4", "fp16"}
image_size: int = 512,
default_negative_prompt: str = "blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas."
):
self.model_path = model_path
self.qwen_vl_path = qwen_vl_path
self.quant = quant
self.image_size = image_size
self.default_negative_prompt = default_negative_prompt
self.device = torch.device("cuda")
self.pipeline = None#self._init_pipeline()
def _init_pipeline(self) -> StableDiffusion3KontextPipeline:
print("Initializing UniPicV2 pipeline...")
# ===== 1. Initialize BNB Config =====
bnb4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
# ===== 2. Load SD3 Transformer =====
if self.quant == "int4":
transformer = SD3Transformer2DKontextModel.from_pretrained(
self.model_path, subfolder="transformer",
quantization_config=bnb4, device_map="auto", low_cpu_mem_usage=True
)
else:
transformer = SD3Transformer2DKontextModel.from_pretrained(
self.model_path, subfolder="transformer",
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True
)
# ===== 3. Load VAE =====
vae = AutoencoderKL.from_pretrained(
self.model_path, subfolder="vae",
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True
).to(self.device)
# ===== 4. Load Qwen2.5-VL (LMM) =====
try:
self.lmm = Qwen2_5_VLForConditionalGeneration.from_pretrained(
self.qwen_vl_path,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
device_map="auto",
).to(self.device)
print("**"*20)
except Exception:
self.lmm = Qwen2_5_VLForConditionalGeneration.from_pretrained(
self.qwen_vl_path,
torch_dtype=torch.float16,
attn_implementation="sdpa",
device_map="auto",
).to(self.device)
# ===== 5. Load Processor =====
self.processor = Qwen2_5_VLProcessor.from_pretrained(self.qwen_vl_path, use_fast=False)
if hasattr(self.processor, "chat_template") and self.processor.chat_template:
self.processor.chat_template = self.processor.chat_template.replace(
"{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}",
""
)
# ===== 6. Load Conditioner =====
self.conditioner = StableDiffusion3Conditioner.from_pretrained(
self.model_path, subfolder="conditioner",
torch_dtype=torch.float16, low_cpu_mem_usage=True
).to(self.device)
# ===== 7. Load Scheduler =====
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
self.model_path, subfolder="scheduler"
)
# ===== 8. Create Pipeline =====
pipeline = StableDiffusion3KontextPipeline(
transformer=transformer,
vae=vae,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
text_encoder_3=None,
tokenizer_3=None,
scheduler=scheduler
)
try:
pipeline.enable_vae_slicing()
pipeline.enable_vae_tiling()
pipeline.enable_model_cpu_offload()
except Exception:
print("Note: Could not enable all memory-saving features")
print("Pipeline initialization complete!")
return pipeline
def _prepare_text_inputs(self, prompt: str, negative_prompt: str = None):
negative_prompt = negative_prompt or self.default_negative_prompt
messages = [
[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
[{"role": "user", "content": [{"type": "text", "text": negative_prompt}]}]
]
texts = [
self.processor.apply_chat_template(m, tokenize=False, add_generation_prompt=True)
for m in messages
]
inputs = self.processor(
text=texts,
images=None,
padding=True,
return_tensors="pt"
)
return inputs
def _prepare_image_inputs(self, image: Image.Image, prompt: str, negative_prompt: str = None):
negative_prompt = negative_prompt or self.default_negative_prompt
messages = [
[{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}],
[{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": negative_prompt}]}]
]
texts = [
self.processor.apply_chat_template(m, tokenize=False, add_generation_prompt=True)
for m in messages
]
min_pixels = max_pixels = int(image.height * 28 / 32 * image.width * 28 / 32)
inputs = self.processor(
text=texts,
images=[image] * 2,
min_pixels=min_pixels,
max_pixels=max_pixels,
padding=True,
return_tensors="pt"
)
return inputs
def _process_inputs(self, inputs: dict, num_queries: int):
# Ensure all tensors are on the correct device
inputs = {
k: v.to(self.device) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()
}
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
# Pad with meta queries
pad_ids = torch.zeros((input_ids.size(0), num_queries),
dtype=input_ids.dtype, device=self.device)
pad_mask = torch.ones((attention_mask.size(0), num_queries),
dtype=attention_mask.dtype, device=self.device)
input_ids = torch.cat([input_ids, pad_ids], dim=1)
attention_mask = torch.cat([attention_mask, pad_mask], dim=1)
# Get input embeddings
# 获取 embedding 权重所在设备
embed_device = self.lmm.get_input_embeddings().weight.device
# 确保 input_ids 在同一设备
input_ids = input_ids.to(embed_device)
inputs_embeds = self.lmm.get_input_embeddings()(input_ids)
# Ensure meta queries are on correct device
self.conditioner.meta_queries.data = self.conditioner.meta_queries.data.to(self.device)
inputs_embeds[:, -num_queries:] = self.conditioner.meta_queries[None].expand(2, -1, -1)
# Handle image embeddings if present
if "pixel_values" in inputs:
image_embeds = self.lmm.visual(
inputs["pixel_values"].to(self.device),
grid_thw=inputs["image_grid_thw"].to(self.device)
)
image_token_id = self.processor.tokenizer.convert_tokens_to_ids('<|image_pad|>')
mask_img = (input_ids == image_token_id)
inputs_embeds[mask_img] = image_embeds
# Forward through LMM
if hasattr(self.lmm.model, "rope_deltas"):
self.lmm.model.rope_deltas = None
#model_device = self.lmm.model.embed_tokens.weight.device
# 强制将所有 tensor 输入搬到这个设备
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.device)
outputs = self.lmm.model(
inputs_embeds=inputs_embeds.to(self.device),
attention_mask=attention_mask.to(self.device),
image_grid_thw=inputs.get("image_grid_thw", None),
use_cache=False
)
hidden_states = outputs.last_hidden_state[:, -num_queries:]
hidden_states = hidden_states.to(self.device)
# Get prompt embeds
prompt_embeds, pooled_prompt_embeds = self.conditioner(hidden_states)
return {
"prompt_embeds": prompt_embeds[:1],
"pooled_prompt_embeds": pooled_prompt_embeds[:1],
"negative_prompt_embeds": prompt_embeds[1:],
"negative_pooled_prompt_embeds": pooled_prompt_embeds[1:]
}
def _resize_image(self, image: Image.Image, size: int) -> Image.Image:
w, h = image.size
if w >= h:
new_w = size
new_h = int(h * (new_w / w))
new_h = (new_h // 32) * 32
else:
new_h = size
new_w = int(w * (new_h / h))
new_w = (new_w // 32) * 32
return image.resize((new_w, new_h))
@spaces.GPU(duration=120)
def generate_image(
self,
prompt: str,
negative_prompt: Optional[str] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 36,
guidance_scale: float = 3.0,
seed: int = 42
) -> Image.Image:
if not self.pipeline:
self.pipeline = self._init_pipeline()
height = height or self.image_size
width = width or self.image_size
inputs = self._prepare_text_inputs(prompt, negative_prompt)
num_queries = self.conditioner.config.num_queries
embeds = self._process_inputs(inputs, num_queries)
generator = torch.Generator(device=self.device).manual_seed(seed)
image = self.pipeline(
prompt_embeds=embeds["prompt_embeds"].to(self.device),
pooled_prompt_embeds=embeds["pooled_prompt_embeds"].to(self.device),
negative_prompt_embeds=embeds["negative_prompt_embeds"].to(self.device),
negative_pooled_prompt_embeds=embeds["negative_pooled_prompt_embeds"].to(self.device),
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images
return image
@spaces.GPU(duration=120)
def edit_image(
self,
image: Image.Image,
prompt: str,
negative_prompt: Optional[str] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 36,
guidance_scale: float = 3.0,
seed: int = 42
) -> Image.Image:
if not self.pipeline:
self.pipeline = self._init_pipeline()
original_size = image.size
image = self._resize_image(image, self.image_size)
if height is None or width is None:
height, width = image.height, image.width
inputs = self._prepare_image_inputs(image, prompt, negative_prompt)
num_queries = self.conditioner.config.num_queries
embeds = self._process_inputs(inputs, num_queries)
generator = torch.Generator(device=self.device).manual_seed(seed)
edited_image = self.pipeline(
image=image,
prompt_embeds=embeds["prompt_embeds"].to(self.device),
pooled_prompt_embeds=embeds["pooled_prompt_embeds"].to(self.device),
negative_prompt_embeds=embeds["negative_prompt_embeds"].to(self.device),
negative_pooled_prompt_embeds=embeds["negative_pooled_prompt_embeds"].to(self.device),
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images
return edited_image
@spaces.GPU(duration=120)
def understand_image(
self,
image: Image.Image,
prompt: str,
max_new_tokens: int = 512
) -> str:
"""
Understand the content of an image and answer questions about it.
Args:
image: Input image to understand
prompt: Question or instruction about the image
max_new_tokens: Maximum number of tokens to generate
Returns:
str: The model's response to the prompt
"""
# Prepare messages in Qwen-VL format
if not self.pipeline:
self.pipeline = self._init_pipeline()
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
},
]
# Apply chat template
text = self.processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Calculate appropriate image size for processing
min_pixels = max_pixels = int(image.height * 28 / 32 * image.width * 28 / 32)
# Process inputs
inputs = self.processor(
text=[text],
images=[image],
min_pixels=min_pixels,
max_pixels=max_pixels,
padding=True,
return_tensors="pt"
).to(self.device)
# Generate response
generated_ids = self.lmm.generate(
**inputs,
max_new_tokens=max_new_tokens
)
# Trim input tokens from output
generated_ids_trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
# Decode the response
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return output_text
|