Spaces:
Running
on
Zero
Running
on
Zero
Upload 7 files
Browse files- ai.png +0 -0
- unipicv2/configuration_connector.py +27 -0
- unipicv2/modeling_connector.py +485 -0
- unipicv2/pipeline_stable_diffusion_3_kontext.py +1142 -0
- unipicv2/stable_diffusion_3_conditioner.py +82 -0
- unipicv2/transformer_sd3_kontext.py +455 -0
- user.png +0 -0
ai.png
ADDED
![]() |
unipicv2/configuration_connector.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
|
7 |
+
class ConnectorConfig(PretrainedConfig):
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
hidden_size=768,
|
11 |
+
intermediate_size=3072,
|
12 |
+
num_hidden_layers=12,
|
13 |
+
num_attention_heads=12,
|
14 |
+
hidden_act="gelu_pytorch_tanh",
|
15 |
+
layer_norm_eps=1e-6,
|
16 |
+
attention_dropout=0.0,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
super().__init__(**kwargs)
|
20 |
+
|
21 |
+
self.hidden_size = hidden_size
|
22 |
+
self.intermediate_size = intermediate_size
|
23 |
+
self.num_hidden_layers = num_hidden_layers
|
24 |
+
self.num_attention_heads = num_attention_heads
|
25 |
+
self.attention_dropout = attention_dropout
|
26 |
+
self.layer_norm_eps = layer_norm_eps
|
27 |
+
self.hidden_act = hidden_act
|
unipicv2/modeling_connector.py
ADDED
@@ -0,0 +1,485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from typing import Any, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
9 |
+
|
10 |
+
from transformers.activations import ACT2FN
|
11 |
+
from transformers.utils import (
|
12 |
+
is_flash_attn_2_available,
|
13 |
+
is_flash_attn_greater_or_equal_2_10,
|
14 |
+
logging,
|
15 |
+
)
|
16 |
+
from .configuration_connector import ConnectorConfig
|
17 |
+
|
18 |
+
|
19 |
+
if is_flash_attn_2_available():
|
20 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
def init_weights(module):
|
27 |
+
"""Initialize the weights"""
|
28 |
+
if isinstance(module, nn.Embedding):
|
29 |
+
default_flax_embed_init(module.weight)
|
30 |
+
elif isinstance(module, ConnectorAttention):
|
31 |
+
nn.init.xavier_uniform_(module.q_proj.weight)
|
32 |
+
nn.init.xavier_uniform_(module.k_proj.weight)
|
33 |
+
nn.init.xavier_uniform_(module.v_proj.weight)
|
34 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
35 |
+
nn.init.zeros_(module.q_proj.bias)
|
36 |
+
nn.init.zeros_(module.k_proj.bias)
|
37 |
+
nn.init.zeros_(module.v_proj.bias)
|
38 |
+
nn.init.zeros_(module.out_proj.bias)
|
39 |
+
elif isinstance(module, ConnectorMLP):
|
40 |
+
nn.init.xavier_uniform_(module.fc1.weight)
|
41 |
+
nn.init.xavier_uniform_(module.fc2.weight)
|
42 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
43 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
44 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
45 |
+
lecun_normal_(module.weight)
|
46 |
+
if module.bias is not None:
|
47 |
+
nn.init.zeros_(module.bias)
|
48 |
+
elif isinstance(module, nn.LayerNorm):
|
49 |
+
module.bias.data.zero_()
|
50 |
+
module.weight.data.fill_(1.0)
|
51 |
+
|
52 |
+
|
53 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
54 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
55 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
56 |
+
def norm_cdf(x):
|
57 |
+
# Computes standard normal cumulative distribution function
|
58 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
59 |
+
|
60 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
61 |
+
warnings.warn(
|
62 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
63 |
+
"The distribution of values may be incorrect.",
|
64 |
+
stacklevel=2,
|
65 |
+
)
|
66 |
+
|
67 |
+
# Values are generated by using a truncated uniform distribution and
|
68 |
+
# then using the inverse CDF for the normal distribution.
|
69 |
+
# Get upper and lower cdf values
|
70 |
+
l = norm_cdf((a - mean) / std)
|
71 |
+
u = norm_cdf((b - mean) / std)
|
72 |
+
|
73 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
74 |
+
# [2l-1, 2u-1].
|
75 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
76 |
+
|
77 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
78 |
+
# standard normal
|
79 |
+
tensor.erfinv_()
|
80 |
+
|
81 |
+
# Transform to proper mean, std
|
82 |
+
tensor.mul_(std * math.sqrt(2.0))
|
83 |
+
tensor.add_(mean)
|
84 |
+
|
85 |
+
# Clamp to ensure it's in the proper range
|
86 |
+
tensor.clamp_(min=a, max=b)
|
87 |
+
|
88 |
+
|
89 |
+
def trunc_normal_tf_(
|
90 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
91 |
+
) -> torch.Tensor:
|
92 |
+
"""Fills the input Tensor with values drawn from a truncated
|
93 |
+
normal distribution. The values are effectively drawn from the
|
94 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
95 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
96 |
+
the bounds. The method used for generating the random values works
|
97 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
98 |
+
|
99 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
100 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
101 |
+
and the result is subsequently scaled and shifted by the mean and std args.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
tensor: an n-dimensional `torch.Tensor`
|
105 |
+
mean: the mean of the normal distribution
|
106 |
+
std: the standard deviation of the normal distribution
|
107 |
+
a: the minimum cutoff value
|
108 |
+
b: the maximum cutoff value
|
109 |
+
"""
|
110 |
+
with torch.no_grad():
|
111 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
112 |
+
tensor.mul_(std).add_(mean)
|
113 |
+
|
114 |
+
|
115 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
116 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
117 |
+
if mode == "fan_in":
|
118 |
+
denom = fan_in
|
119 |
+
elif mode == "fan_out":
|
120 |
+
denom = fan_out
|
121 |
+
elif mode == "fan_avg":
|
122 |
+
denom = (fan_in + fan_out) / 2
|
123 |
+
|
124 |
+
variance = scale / denom
|
125 |
+
|
126 |
+
if distribution == "truncated_normal":
|
127 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
128 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
129 |
+
elif distribution == "normal":
|
130 |
+
with torch.no_grad():
|
131 |
+
tensor.normal_(std=math.sqrt(variance))
|
132 |
+
elif distribution == "uniform":
|
133 |
+
bound = math.sqrt(3 * variance)
|
134 |
+
with torch.no_grad():
|
135 |
+
tensor.uniform_(-bound, bound)
|
136 |
+
else:
|
137 |
+
raise ValueError(f"invalid distribution {distribution}")
|
138 |
+
|
139 |
+
|
140 |
+
def lecun_normal_(tensor):
|
141 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
142 |
+
|
143 |
+
|
144 |
+
def default_flax_embed_init(tensor):
|
145 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
146 |
+
|
147 |
+
|
148 |
+
class ConnectorAttention(nn.Module):
|
149 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
150 |
+
|
151 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
152 |
+
def __init__(self, config):
|
153 |
+
super().__init__()
|
154 |
+
self.config = config
|
155 |
+
self.embed_dim = config.hidden_size
|
156 |
+
self.num_heads = config.num_attention_heads
|
157 |
+
self.head_dim = self.embed_dim // self.num_heads
|
158 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
159 |
+
raise ValueError(
|
160 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
161 |
+
f" {self.num_heads})."
|
162 |
+
)
|
163 |
+
self.scale = self.head_dim**-0.5
|
164 |
+
self.dropout = config.attention_dropout
|
165 |
+
|
166 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
167 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
168 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
169 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
170 |
+
|
171 |
+
def forward(
|
172 |
+
self,
|
173 |
+
hidden_states: torch.Tensor,
|
174 |
+
attention_mask: Optional[torch.Tensor] = None,
|
175 |
+
output_attentions: Optional[bool] = False,
|
176 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
177 |
+
"""Input shape: Batch x Time x Channel"""
|
178 |
+
|
179 |
+
batch_size, q_len, _ = hidden_states.size()
|
180 |
+
|
181 |
+
query_states = self.q_proj(hidden_states)
|
182 |
+
key_states = self.k_proj(hidden_states)
|
183 |
+
value_states = self.v_proj(hidden_states)
|
184 |
+
|
185 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
186 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
187 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
188 |
+
|
189 |
+
k_v_seq_len = key_states.shape[-2]
|
190 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
191 |
+
|
192 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
193 |
+
raise ValueError(
|
194 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
195 |
+
f" {attn_weights.size()}"
|
196 |
+
)
|
197 |
+
|
198 |
+
if attention_mask is not None:
|
199 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
200 |
+
raise ValueError(
|
201 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
202 |
+
)
|
203 |
+
attn_weights = attn_weights + attention_mask
|
204 |
+
|
205 |
+
# upcast attention to fp32
|
206 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
207 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
208 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
209 |
+
|
210 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
211 |
+
raise ValueError(
|
212 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
213 |
+
f" {attn_output.size()}"
|
214 |
+
)
|
215 |
+
|
216 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
217 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
218 |
+
|
219 |
+
attn_output = self.out_proj(attn_output)
|
220 |
+
|
221 |
+
return attn_output, attn_weights
|
222 |
+
|
223 |
+
|
224 |
+
class ConnectorFlashAttention2(ConnectorAttention):
|
225 |
+
"""
|
226 |
+
ConnectorAttention flash attention module. This module inherits from `ConnectorAttention` as the weights of the module stays
|
227 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
228 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
229 |
+
"""
|
230 |
+
|
231 |
+
is_causal = False
|
232 |
+
|
233 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
234 |
+
def __init__(self, *args, **kwargs):
|
235 |
+
super().__init__(*args, **kwargs)
|
236 |
+
|
237 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
238 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
239 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
240 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
241 |
+
|
242 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
243 |
+
def forward(
|
244 |
+
self,
|
245 |
+
hidden_states: torch.Tensor,
|
246 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
247 |
+
output_attentions: bool = False,
|
248 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
249 |
+
output_attentions = False
|
250 |
+
|
251 |
+
batch_size, q_len, _ = hidden_states.size()
|
252 |
+
|
253 |
+
query_states = self.q_proj(hidden_states)
|
254 |
+
key_states = self.k_proj(hidden_states)
|
255 |
+
value_states = self.v_proj(hidden_states)
|
256 |
+
|
257 |
+
# Flash attention requires the input to have the shape
|
258 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
259 |
+
# therefore we just need to keep the original shape
|
260 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
261 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
262 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
263 |
+
|
264 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
265 |
+
# to be able to avoid many of these transpose/reshape/view.
|
266 |
+
query_states = query_states.transpose(1, 2)
|
267 |
+
key_states = key_states.transpose(1, 2)
|
268 |
+
value_states = value_states.transpose(1, 2)
|
269 |
+
|
270 |
+
dropout_rate = self.dropout if self.training else 0.0
|
271 |
+
|
272 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
273 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
274 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
275 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
276 |
+
# in fp32.
|
277 |
+
|
278 |
+
input_dtype = query_states.dtype
|
279 |
+
if input_dtype == torch.float32:
|
280 |
+
if torch.is_autocast_enabled():
|
281 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
282 |
+
# Handle the case where the model is quantized
|
283 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
284 |
+
target_dtype = self.config._pre_quantization_dtype
|
285 |
+
else:
|
286 |
+
target_dtype = self.q_proj.weight.dtype
|
287 |
+
|
288 |
+
logger.warning_once(
|
289 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
290 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
291 |
+
f" {target_dtype}."
|
292 |
+
)
|
293 |
+
|
294 |
+
query_states = query_states.to(target_dtype)
|
295 |
+
key_states = key_states.to(target_dtype)
|
296 |
+
value_states = value_states.to(target_dtype)
|
297 |
+
|
298 |
+
attn_output = _flash_attention_forward(
|
299 |
+
query_states,
|
300 |
+
key_states,
|
301 |
+
value_states,
|
302 |
+
attention_mask,
|
303 |
+
q_len,
|
304 |
+
dropout=dropout_rate,
|
305 |
+
is_causal=self.is_causal,
|
306 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
307 |
+
)
|
308 |
+
|
309 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
|
310 |
+
attn_output = self.out_proj(attn_output)
|
311 |
+
|
312 |
+
if not output_attentions:
|
313 |
+
attn_weights = None
|
314 |
+
|
315 |
+
return attn_output, attn_weights
|
316 |
+
|
317 |
+
|
318 |
+
class ConnectorSdpaAttention(ConnectorAttention):
|
319 |
+
"""
|
320 |
+
Connector attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
321 |
+
`ConnectorAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
322 |
+
SDPA API.
|
323 |
+
"""
|
324 |
+
|
325 |
+
is_causal = False
|
326 |
+
|
327 |
+
# Adapted from ConnectorAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
|
328 |
+
def forward(
|
329 |
+
self,
|
330 |
+
hidden_states: torch.Tensor,
|
331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
332 |
+
output_attentions: Optional[bool] = False,
|
333 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
334 |
+
if output_attentions:
|
335 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
336 |
+
logger.warning_once(
|
337 |
+
"ConnectorModel is using ConnectorSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
338 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
339 |
+
)
|
340 |
+
return super().forward(
|
341 |
+
hidden_states=hidden_states,
|
342 |
+
attention_mask=attention_mask,
|
343 |
+
output_attentions=output_attentions,
|
344 |
+
)
|
345 |
+
|
346 |
+
batch_size, q_len, _ = hidden_states.size()
|
347 |
+
|
348 |
+
query_states = self.q_proj(hidden_states)
|
349 |
+
key_states = self.k_proj(hidden_states)
|
350 |
+
value_states = self.v_proj(hidden_states)
|
351 |
+
|
352 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
353 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
354 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
355 |
+
|
356 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
357 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
358 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
359 |
+
query_states = query_states.contiguous()
|
360 |
+
key_states = key_states.contiguous()
|
361 |
+
value_states = value_states.contiguous()
|
362 |
+
|
363 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
364 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
365 |
+
is_causal = True if self.is_causal and q_len > 1 else False
|
366 |
+
|
367 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
368 |
+
query_states,
|
369 |
+
key_states,
|
370 |
+
value_states,
|
371 |
+
attn_mask=attention_mask,
|
372 |
+
dropout_p=self.dropout if self.training else 0.0,
|
373 |
+
is_causal=is_causal,
|
374 |
+
)
|
375 |
+
|
376 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
377 |
+
attn_output = attn_output.view(batch_size, q_len, self.embed_dim)
|
378 |
+
|
379 |
+
attn_output = self.out_proj(attn_output)
|
380 |
+
|
381 |
+
return attn_output, None
|
382 |
+
|
383 |
+
|
384 |
+
CONNECTOR_ATTENTION_CLASSES = {
|
385 |
+
"eager": ConnectorAttention,
|
386 |
+
"flash_attention_2": ConnectorFlashAttention2,
|
387 |
+
"sdpa": ConnectorSdpaAttention,
|
388 |
+
}
|
389 |
+
|
390 |
+
|
391 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Connector
|
392 |
+
class ConnectorMLP(nn.Module):
|
393 |
+
def __init__(self, config):
|
394 |
+
super().__init__()
|
395 |
+
self.config = config
|
396 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
397 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
398 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
399 |
+
|
400 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
401 |
+
hidden_states = self.fc1(hidden_states)
|
402 |
+
hidden_states = self.activation_fn(hidden_states)
|
403 |
+
hidden_states = self.fc2(hidden_states)
|
404 |
+
return hidden_states
|
405 |
+
|
406 |
+
|
407 |
+
class ConnectorEncoderLayer(nn.Module):
|
408 |
+
def __init__(self, config: ConnectorConfig):
|
409 |
+
super().__init__()
|
410 |
+
self.embed_dim = config.hidden_size
|
411 |
+
self.self_attn = CONNECTOR_ATTENTION_CLASSES[config._attn_implementation](config=config)
|
412 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
413 |
+
self.mlp = ConnectorMLP(config)
|
414 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
415 |
+
|
416 |
+
# Ignore copy
|
417 |
+
def forward(
|
418 |
+
self,
|
419 |
+
hidden_states: torch.Tensor,
|
420 |
+
attention_mask: torch.Tensor,
|
421 |
+
output_attentions: Optional[bool] = False,
|
422 |
+
) -> Tuple[torch.FloatTensor]:
|
423 |
+
"""
|
424 |
+
Args:
|
425 |
+
hidden_states (`torch.FloatTensor`):
|
426 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
427 |
+
attention_mask (`torch.FloatTensor`):
|
428 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
429 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
430 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
431 |
+
returned tensors for more detail.
|
432 |
+
"""
|
433 |
+
residual = hidden_states
|
434 |
+
|
435 |
+
hidden_states = self.layer_norm1(hidden_states)
|
436 |
+
hidden_states, attn_weights = self.self_attn(
|
437 |
+
hidden_states=hidden_states,
|
438 |
+
attention_mask=attention_mask,
|
439 |
+
output_attentions=output_attentions,
|
440 |
+
)
|
441 |
+
hidden_states = residual + hidden_states
|
442 |
+
|
443 |
+
residual = hidden_states
|
444 |
+
hidden_states = self.layer_norm2(hidden_states)
|
445 |
+
hidden_states = self.mlp(hidden_states)
|
446 |
+
hidden_states = residual + hidden_states
|
447 |
+
|
448 |
+
outputs = (hidden_states,)
|
449 |
+
|
450 |
+
if output_attentions:
|
451 |
+
outputs += (attn_weights,)
|
452 |
+
|
453 |
+
return outputs
|
454 |
+
|
455 |
+
|
456 |
+
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Connector
|
457 |
+
class ConnectorEncoder(nn.Module):
|
458 |
+
def __init__(self, config: ConnectorConfig):
|
459 |
+
super().__init__()
|
460 |
+
self.config = config
|
461 |
+
self.layers = nn.ModuleList([ConnectorEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
462 |
+
self.gradient_checkpointing = False
|
463 |
+
self.apply(init_weights)
|
464 |
+
|
465 |
+
def forward(self, inputs_embeds):
|
466 |
+
hidden_states = inputs_embeds
|
467 |
+
for encoder_layer in self.layers:
|
468 |
+
if self.gradient_checkpointing and self.training:
|
469 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
470 |
+
encoder_layer.__call__,
|
471 |
+
hidden_states,
|
472 |
+
None,
|
473 |
+
False,
|
474 |
+
use_reentrant=False
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
layer_outputs = encoder_layer(
|
478 |
+
hidden_states,
|
479 |
+
None,
|
480 |
+
output_attentions=False,
|
481 |
+
)
|
482 |
+
|
483 |
+
hidden_states = layer_outputs[0]
|
484 |
+
|
485 |
+
return hidden_states
|
unipicv2/pipeline_stable_diffusion_3_kontext.py
ADDED
@@ -0,0 +1,1142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from transformers import (
|
7 |
+
CLIPTextModelWithProjection,
|
8 |
+
CLIPTokenizer,
|
9 |
+
SiglipImageProcessor,
|
10 |
+
SiglipVisionModel,
|
11 |
+
T5EncoderModel,
|
12 |
+
T5TokenizerFast,
|
13 |
+
)
|
14 |
+
|
15 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
16 |
+
from diffusers.loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin
|
17 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
18 |
+
from .transformer_sd3_kontext import SD3Transformer2DKontextModel
|
19 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
20 |
+
from diffusers.utils import (
|
21 |
+
USE_PEFT_BACKEND,
|
22 |
+
is_torch_xla_available,
|
23 |
+
logging,
|
24 |
+
replace_example_docstring,
|
25 |
+
scale_lora_layers,
|
26 |
+
unscale_lora_layers,
|
27 |
+
)
|
28 |
+
from diffusers.utils.torch_utils import randn_tensor
|
29 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
30 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
|
31 |
+
|
32 |
+
|
33 |
+
if is_torch_xla_available():
|
34 |
+
import torch_xla.core.xla_model as xm
|
35 |
+
|
36 |
+
XLA_AVAILABLE = True
|
37 |
+
else:
|
38 |
+
XLA_AVAILABLE = False
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
42 |
+
|
43 |
+
EXAMPLE_DOC_STRING = """
|
44 |
+
Examples:
|
45 |
+
```py
|
46 |
+
>>> import torch
|
47 |
+
>>> from diffusers import StableDiffusion3Pipeline
|
48 |
+
|
49 |
+
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
|
50 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
51 |
+
... )
|
52 |
+
>>> pipe.to("cuda")
|
53 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
54 |
+
>>> image = pipe(prompt).images[0]
|
55 |
+
>>> image.save("sd3.png")
|
56 |
+
```
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
+
def pil_list_to_tensor(images):
|
61 |
+
"""
|
62 |
+
Args:
|
63 |
+
images: list/tuple of PIL.Image with same H, W
|
64 |
+
Returns:
|
65 |
+
torch.Tensor: (B, C, H, W) in [-1, 1]
|
66 |
+
"""
|
67 |
+
# Step 1: Convert each PIL to tensor in [0, 1]
|
68 |
+
to_tensor = transforms.ToTensor() # PIL -> float tensor in [0, 1]
|
69 |
+
tensors = [to_tensor(img) for img in images] # list of (C, H, W)
|
70 |
+
|
71 |
+
# Step 2: Stack into (B, C, H, W)
|
72 |
+
batch = torch.stack(tensors, dim=0) # (B, C, H, W)
|
73 |
+
|
74 |
+
# Step 3: Scale [0, 1] -> [-1, 1]
|
75 |
+
batch = batch * 2.0 - 1.0
|
76 |
+
return batch
|
77 |
+
|
78 |
+
|
79 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
80 |
+
def calculate_shift(
|
81 |
+
image_seq_len,
|
82 |
+
base_seq_len: int = 256,
|
83 |
+
max_seq_len: int = 4096,
|
84 |
+
base_shift: float = 0.5,
|
85 |
+
max_shift: float = 1.15,
|
86 |
+
):
|
87 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
88 |
+
b = base_shift - m * base_seq_len
|
89 |
+
mu = image_seq_len * m + b
|
90 |
+
return mu
|
91 |
+
|
92 |
+
|
93 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
94 |
+
def retrieve_timesteps(
|
95 |
+
scheduler,
|
96 |
+
num_inference_steps: Optional[int] = None,
|
97 |
+
device: Optional[Union[str, torch.device]] = None,
|
98 |
+
timesteps: Optional[List[int]] = None,
|
99 |
+
sigmas: Optional[List[float]] = None,
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
r"""
|
103 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
104 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
scheduler (`SchedulerMixin`):
|
108 |
+
The scheduler to get timesteps from.
|
109 |
+
num_inference_steps (`int`):
|
110 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
111 |
+
must be `None`.
|
112 |
+
device (`str` or `torch.device`, *optional*):
|
113 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
114 |
+
timesteps (`List[int]`, *optional*):
|
115 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
116 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
117 |
+
sigmas (`List[float]`, *optional*):
|
118 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
119 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
123 |
+
second element is the number of inference steps.
|
124 |
+
"""
|
125 |
+
if timesteps is not None and sigmas is not None:
|
126 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
127 |
+
if timesteps is not None:
|
128 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
129 |
+
if not accepts_timesteps:
|
130 |
+
raise ValueError(
|
131 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
132 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
133 |
+
)
|
134 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
135 |
+
timesteps = scheduler.timesteps
|
136 |
+
num_inference_steps = len(timesteps)
|
137 |
+
elif sigmas is not None:
|
138 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
139 |
+
if not accept_sigmas:
|
140 |
+
raise ValueError(
|
141 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
142 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
143 |
+
)
|
144 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
145 |
+
timesteps = scheduler.timesteps
|
146 |
+
num_inference_steps = len(timesteps)
|
147 |
+
else:
|
148 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
149 |
+
timesteps = scheduler.timesteps
|
150 |
+
return timesteps, num_inference_steps
|
151 |
+
|
152 |
+
|
153 |
+
class StableDiffusion3KontextPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin):
|
154 |
+
r"""
|
155 |
+
Args:
|
156 |
+
transformer ([`SD3Transformer2DModel`]):
|
157 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
158 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
159 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
160 |
+
vae ([`AutoencoderKL`]):
|
161 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
162 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
163 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
164 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
165 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
166 |
+
as its dimension.
|
167 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
168 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
169 |
+
specifically the
|
170 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
171 |
+
variant.
|
172 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
173 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
174 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
175 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
176 |
+
tokenizer (`CLIPTokenizer`):
|
177 |
+
Tokenizer of class
|
178 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
179 |
+
tokenizer_2 (`CLIPTokenizer`):
|
180 |
+
Second Tokenizer of class
|
181 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
182 |
+
tokenizer_3 (`T5TokenizerFast`):
|
183 |
+
Tokenizer of class
|
184 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
185 |
+
image_encoder (`SiglipVisionModel`, *optional*):
|
186 |
+
Pre-trained Vision Model for IP Adapter.
|
187 |
+
feature_extractor (`SiglipImageProcessor`, *optional*):
|
188 |
+
Image processor for IP Adapter.
|
189 |
+
"""
|
190 |
+
|
191 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
|
192 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
193 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
transformer: SD3Transformer2DKontextModel,
|
198 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
199 |
+
vae: AutoencoderKL,
|
200 |
+
text_encoder: CLIPTextModelWithProjection,
|
201 |
+
tokenizer: CLIPTokenizer,
|
202 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
203 |
+
tokenizer_2: CLIPTokenizer,
|
204 |
+
text_encoder_3: T5EncoderModel,
|
205 |
+
tokenizer_3: T5TokenizerFast,
|
206 |
+
image_encoder: SiglipVisionModel = None,
|
207 |
+
feature_extractor: SiglipImageProcessor = None,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
|
211 |
+
self.register_modules(
|
212 |
+
vae=vae,
|
213 |
+
text_encoder=text_encoder,
|
214 |
+
text_encoder_2=text_encoder_2,
|
215 |
+
text_encoder_3=text_encoder_3,
|
216 |
+
tokenizer=tokenizer,
|
217 |
+
tokenizer_2=tokenizer_2,
|
218 |
+
tokenizer_3=tokenizer_3,
|
219 |
+
transformer=transformer,
|
220 |
+
scheduler=scheduler,
|
221 |
+
image_encoder=image_encoder,
|
222 |
+
feature_extractor=feature_extractor,
|
223 |
+
)
|
224 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
225 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
226 |
+
self.tokenizer_max_length = (
|
227 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
228 |
+
)
|
229 |
+
self.default_sample_size = (
|
230 |
+
self.transformer.config.sample_size
|
231 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
232 |
+
else 128
|
233 |
+
)
|
234 |
+
self.patch_size = (
|
235 |
+
self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
|
236 |
+
)
|
237 |
+
|
238 |
+
def _get_t5_prompt_embeds(
|
239 |
+
self,
|
240 |
+
prompt: Union[str, List[str]] = None,
|
241 |
+
num_images_per_prompt: int = 1,
|
242 |
+
max_sequence_length: int = 256,
|
243 |
+
device: Optional[torch.device] = None,
|
244 |
+
dtype: Optional[torch.dtype] = None,
|
245 |
+
):
|
246 |
+
device = device or self._execution_device
|
247 |
+
dtype = dtype or self.text_encoder.dtype
|
248 |
+
|
249 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
250 |
+
batch_size = len(prompt)
|
251 |
+
|
252 |
+
if self.text_encoder_3 is None:
|
253 |
+
return torch.zeros(
|
254 |
+
(
|
255 |
+
batch_size * num_images_per_prompt,
|
256 |
+
self.tokenizer_max_length,
|
257 |
+
self.transformer.config.joint_attention_dim,
|
258 |
+
),
|
259 |
+
device=device,
|
260 |
+
dtype=dtype,
|
261 |
+
)
|
262 |
+
|
263 |
+
text_inputs = self.tokenizer_3(
|
264 |
+
prompt,
|
265 |
+
padding="max_length",
|
266 |
+
max_length=max_sequence_length,
|
267 |
+
truncation=True,
|
268 |
+
add_special_tokens=True,
|
269 |
+
return_tensors="pt",
|
270 |
+
)
|
271 |
+
text_input_ids = text_inputs.input_ids
|
272 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
273 |
+
|
274 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
275 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
276 |
+
logger.warning(
|
277 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
278 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
279 |
+
)
|
280 |
+
|
281 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
282 |
+
|
283 |
+
dtype = self.text_encoder_3.dtype
|
284 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
285 |
+
|
286 |
+
_, seq_len, _ = prompt_embeds.shape
|
287 |
+
|
288 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
289 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
290 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
291 |
+
|
292 |
+
return prompt_embeds
|
293 |
+
|
294 |
+
def _get_clip_prompt_embeds(
|
295 |
+
self,
|
296 |
+
prompt: Union[str, List[str]],
|
297 |
+
num_images_per_prompt: int = 1,
|
298 |
+
device: Optional[torch.device] = None,
|
299 |
+
clip_skip: Optional[int] = None,
|
300 |
+
clip_model_index: int = 0,
|
301 |
+
):
|
302 |
+
device = device or self._execution_device
|
303 |
+
|
304 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
305 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
306 |
+
|
307 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
308 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
309 |
+
|
310 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
311 |
+
batch_size = len(prompt)
|
312 |
+
|
313 |
+
text_inputs = tokenizer(
|
314 |
+
prompt,
|
315 |
+
padding="max_length",
|
316 |
+
max_length=self.tokenizer_max_length,
|
317 |
+
truncation=True,
|
318 |
+
return_tensors="pt",
|
319 |
+
)
|
320 |
+
|
321 |
+
text_input_ids = text_inputs.input_ids
|
322 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
323 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
324 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
325 |
+
logger.warning(
|
326 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
327 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
328 |
+
)
|
329 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
330 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
331 |
+
|
332 |
+
if clip_skip is None:
|
333 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
334 |
+
else:
|
335 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
336 |
+
|
337 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
338 |
+
|
339 |
+
_, seq_len, _ = prompt_embeds.shape
|
340 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
341 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
342 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
343 |
+
|
344 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
345 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
346 |
+
|
347 |
+
return prompt_embeds, pooled_prompt_embeds
|
348 |
+
|
349 |
+
def encode_prompt(
|
350 |
+
self,
|
351 |
+
prompt: Union[str, List[str]],
|
352 |
+
prompt_2: Union[str, List[str]],
|
353 |
+
prompt_3: Union[str, List[str]],
|
354 |
+
device: Optional[torch.device] = None,
|
355 |
+
num_images_per_prompt: int = 1,
|
356 |
+
do_classifier_free_guidance: bool = True,
|
357 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
358 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
359 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
360 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
361 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
362 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
363 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
364 |
+
clip_skip: Optional[int] = None,
|
365 |
+
max_sequence_length: int = 256,
|
366 |
+
lora_scale: Optional[float] = None,
|
367 |
+
):
|
368 |
+
r"""
|
369 |
+
|
370 |
+
Args:
|
371 |
+
prompt (`str` or `List[str]`, *optional*):
|
372 |
+
prompt to be encoded
|
373 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
374 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
375 |
+
used in all text-encoders
|
376 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
377 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
378 |
+
used in all text-encoders
|
379 |
+
device: (`torch.device`):
|
380 |
+
torch device
|
381 |
+
num_images_per_prompt (`int`):
|
382 |
+
number of images that should be generated per prompt
|
383 |
+
do_classifier_free_guidance (`bool`):
|
384 |
+
whether to use classifier free guidance or not
|
385 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
386 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
387 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
388 |
+
less than `1`).
|
389 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
390 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
391 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
392 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
393 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
394 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
|
395 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
396 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
397 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
398 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
399 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
400 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
401 |
+
argument.
|
402 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
403 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
404 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
405 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
406 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
407 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
408 |
+
input argument.
|
409 |
+
clip_skip (`int`, *optional*):
|
410 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
411 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
412 |
+
lora_scale (`float`, *optional*):
|
413 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
414 |
+
"""
|
415 |
+
device = device or self._execution_device
|
416 |
+
|
417 |
+
# set lora scale so that monkey patched LoRA
|
418 |
+
# function of text encoder can correctly access it
|
419 |
+
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
|
420 |
+
self._lora_scale = lora_scale
|
421 |
+
|
422 |
+
# dynamically adjust the LoRA scale
|
423 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
424 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
425 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
426 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
427 |
+
|
428 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
429 |
+
if prompt is not None:
|
430 |
+
batch_size = len(prompt)
|
431 |
+
else:
|
432 |
+
batch_size = prompt_embeds.shape[0]
|
433 |
+
|
434 |
+
if prompt_embeds is None:
|
435 |
+
prompt_2 = prompt_2 or prompt
|
436 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
437 |
+
|
438 |
+
prompt_3 = prompt_3 or prompt
|
439 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
440 |
+
|
441 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
442 |
+
prompt=prompt,
|
443 |
+
device=device,
|
444 |
+
num_images_per_prompt=num_images_per_prompt,
|
445 |
+
clip_skip=clip_skip,
|
446 |
+
clip_model_index=0,
|
447 |
+
)
|
448 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
449 |
+
prompt=prompt_2,
|
450 |
+
device=device,
|
451 |
+
num_images_per_prompt=num_images_per_prompt,
|
452 |
+
clip_skip=clip_skip,
|
453 |
+
clip_model_index=1,
|
454 |
+
)
|
455 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
456 |
+
|
457 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
458 |
+
prompt=prompt_3,
|
459 |
+
num_images_per_prompt=num_images_per_prompt,
|
460 |
+
max_sequence_length=max_sequence_length,
|
461 |
+
device=device,
|
462 |
+
)
|
463 |
+
|
464 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
465 |
+
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
|
466 |
+
)
|
467 |
+
|
468 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
469 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
470 |
+
|
471 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
472 |
+
negative_prompt = negative_prompt or ""
|
473 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
474 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
475 |
+
|
476 |
+
# normalize str to list
|
477 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
478 |
+
negative_prompt_2 = (
|
479 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
480 |
+
)
|
481 |
+
negative_prompt_3 = (
|
482 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
483 |
+
)
|
484 |
+
|
485 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
486 |
+
raise TypeError(
|
487 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
488 |
+
f" {type(prompt)}."
|
489 |
+
)
|
490 |
+
elif batch_size != len(negative_prompt):
|
491 |
+
raise ValueError(
|
492 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
493 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
494 |
+
" the batch size of `prompt`."
|
495 |
+
)
|
496 |
+
|
497 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
498 |
+
negative_prompt,
|
499 |
+
device=device,
|
500 |
+
num_images_per_prompt=num_images_per_prompt,
|
501 |
+
clip_skip=None,
|
502 |
+
clip_model_index=0,
|
503 |
+
)
|
504 |
+
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
505 |
+
negative_prompt_2,
|
506 |
+
device=device,
|
507 |
+
num_images_per_prompt=num_images_per_prompt,
|
508 |
+
clip_skip=None,
|
509 |
+
clip_model_index=1,
|
510 |
+
)
|
511 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
512 |
+
|
513 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
514 |
+
prompt=negative_prompt_3,
|
515 |
+
num_images_per_prompt=num_images_per_prompt,
|
516 |
+
max_sequence_length=max_sequence_length,
|
517 |
+
device=device,
|
518 |
+
)
|
519 |
+
|
520 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
521 |
+
negative_clip_prompt_embeds,
|
522 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
523 |
+
)
|
524 |
+
|
525 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
526 |
+
negative_pooled_prompt_embeds = torch.cat(
|
527 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
528 |
+
)
|
529 |
+
|
530 |
+
if self.text_encoder is not None:
|
531 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
532 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
533 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
534 |
+
|
535 |
+
if self.text_encoder_2 is not None:
|
536 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
537 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
538 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
539 |
+
|
540 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
541 |
+
|
542 |
+
def check_inputs(
|
543 |
+
self,
|
544 |
+
prompt,
|
545 |
+
prompt_2,
|
546 |
+
prompt_3,
|
547 |
+
height,
|
548 |
+
width,
|
549 |
+
negative_prompt=None,
|
550 |
+
negative_prompt_2=None,
|
551 |
+
negative_prompt_3=None,
|
552 |
+
prompt_embeds=None,
|
553 |
+
negative_prompt_embeds=None,
|
554 |
+
pooled_prompt_embeds=None,
|
555 |
+
negative_pooled_prompt_embeds=None,
|
556 |
+
callback_on_step_end_tensor_inputs=None,
|
557 |
+
max_sequence_length=None,
|
558 |
+
):
|
559 |
+
if (
|
560 |
+
height % (self.vae_scale_factor * self.patch_size) != 0
|
561 |
+
or width % (self.vae_scale_factor * self.patch_size) != 0
|
562 |
+
):
|
563 |
+
raise ValueError(
|
564 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
|
565 |
+
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
|
566 |
+
)
|
567 |
+
|
568 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
569 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
570 |
+
):
|
571 |
+
raise ValueError(
|
572 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
573 |
+
)
|
574 |
+
|
575 |
+
if prompt is not None and prompt_embeds is not None:
|
576 |
+
raise ValueError(
|
577 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
578 |
+
" only forward one of the two."
|
579 |
+
)
|
580 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
581 |
+
raise ValueError(
|
582 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
583 |
+
" only forward one of the two."
|
584 |
+
)
|
585 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
586 |
+
raise ValueError(
|
587 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
588 |
+
" only forward one of the two."
|
589 |
+
)
|
590 |
+
elif prompt is None and prompt_embeds is None:
|
591 |
+
raise ValueError(
|
592 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
593 |
+
)
|
594 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
595 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
596 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
597 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
598 |
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
599 |
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
600 |
+
|
601 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
602 |
+
raise ValueError(
|
603 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
604 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
605 |
+
)
|
606 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
607 |
+
raise ValueError(
|
608 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
609 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
610 |
+
)
|
611 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
612 |
+
raise ValueError(
|
613 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
614 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
615 |
+
)
|
616 |
+
|
617 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
618 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
619 |
+
raise ValueError(
|
620 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
621 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
622 |
+
f" {negative_prompt_embeds.shape}."
|
623 |
+
)
|
624 |
+
|
625 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
626 |
+
raise ValueError(
|
627 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
628 |
+
)
|
629 |
+
|
630 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
631 |
+
raise ValueError(
|
632 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
633 |
+
)
|
634 |
+
|
635 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
636 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
637 |
+
|
638 |
+
def prepare_latents(
|
639 |
+
self,
|
640 |
+
batch_size,
|
641 |
+
num_channels_latents,
|
642 |
+
height,
|
643 |
+
width,
|
644 |
+
dtype,
|
645 |
+
device,
|
646 |
+
generator,
|
647 |
+
latents=None,
|
648 |
+
):
|
649 |
+
if latents is not None:
|
650 |
+
return latents.to(device=device, dtype=dtype)
|
651 |
+
|
652 |
+
shape = (
|
653 |
+
batch_size,
|
654 |
+
num_channels_latents,
|
655 |
+
int(height) // self.vae_scale_factor,
|
656 |
+
int(width) // self.vae_scale_factor,
|
657 |
+
)
|
658 |
+
|
659 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
660 |
+
raise ValueError(
|
661 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
662 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
663 |
+
)
|
664 |
+
|
665 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
666 |
+
|
667 |
+
return latents
|
668 |
+
|
669 |
+
@property
|
670 |
+
def guidance_scale(self):
|
671 |
+
return self._guidance_scale
|
672 |
+
|
673 |
+
@property
|
674 |
+
def skip_guidance_layers(self):
|
675 |
+
return self._skip_guidance_layers
|
676 |
+
|
677 |
+
@property
|
678 |
+
def clip_skip(self):
|
679 |
+
return self._clip_skip
|
680 |
+
|
681 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
682 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
683 |
+
# corresponds to doing no classifier free guidance.
|
684 |
+
@property
|
685 |
+
def do_classifier_free_guidance(self):
|
686 |
+
return self._guidance_scale > 1
|
687 |
+
|
688 |
+
@property
|
689 |
+
def joint_attention_kwargs(self):
|
690 |
+
return self._joint_attention_kwargs
|
691 |
+
|
692 |
+
@property
|
693 |
+
def num_timesteps(self):
|
694 |
+
return self._num_timesteps
|
695 |
+
|
696 |
+
@property
|
697 |
+
def interrupt(self):
|
698 |
+
return self._interrupt
|
699 |
+
|
700 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_image
|
701 |
+
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
|
702 |
+
"""Encodes the given image into a feature representation using a pre-trained image encoder.
|
703 |
+
|
704 |
+
Args:
|
705 |
+
image (`PipelineImageInput`):
|
706 |
+
Input image to be encoded.
|
707 |
+
device: (`torch.device`):
|
708 |
+
Torch device.
|
709 |
+
|
710 |
+
Returns:
|
711 |
+
`torch.Tensor`: The encoded image feature representation.
|
712 |
+
"""
|
713 |
+
if not isinstance(image, torch.Tensor):
|
714 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
715 |
+
|
716 |
+
image = image.to(device=device, dtype=self.dtype)
|
717 |
+
|
718 |
+
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
719 |
+
|
720 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.prepare_ip_adapter_image_embeds
|
721 |
+
def prepare_ip_adapter_image_embeds(
|
722 |
+
self,
|
723 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
724 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
725 |
+
device: Optional[torch.device] = None,
|
726 |
+
num_images_per_prompt: int = 1,
|
727 |
+
do_classifier_free_guidance: bool = True,
|
728 |
+
) -> torch.Tensor:
|
729 |
+
"""Prepares image embeddings for use in the IP-Adapter.
|
730 |
+
|
731 |
+
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
|
732 |
+
|
733 |
+
Args:
|
734 |
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
735 |
+
The input image to extract features from for IP-Adapter.
|
736 |
+
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
|
737 |
+
Precomputed image embeddings.
|
738 |
+
device: (`torch.device`, *optional*):
|
739 |
+
Torch device.
|
740 |
+
num_images_per_prompt (`int`, defaults to 1):
|
741 |
+
Number of images that should be generated per prompt.
|
742 |
+
do_classifier_free_guidance (`bool`, defaults to True):
|
743 |
+
Whether to use classifier free guidance or not.
|
744 |
+
"""
|
745 |
+
device = device or self._execution_device
|
746 |
+
|
747 |
+
if ip_adapter_image_embeds is not None:
|
748 |
+
if do_classifier_free_guidance:
|
749 |
+
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
|
750 |
+
else:
|
751 |
+
single_image_embeds = ip_adapter_image_embeds
|
752 |
+
elif ip_adapter_image is not None:
|
753 |
+
single_image_embeds = self.encode_image(ip_adapter_image, device)
|
754 |
+
if do_classifier_free_guidance:
|
755 |
+
single_negative_image_embeds = torch.zeros_like(single_image_embeds)
|
756 |
+
else:
|
757 |
+
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
|
758 |
+
|
759 |
+
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
760 |
+
|
761 |
+
if do_classifier_free_guidance:
|
762 |
+
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
763 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
|
764 |
+
|
765 |
+
return image_embeds.to(device=device)
|
766 |
+
|
767 |
+
def enable_sequential_cpu_offload(self, *args, **kwargs):
|
768 |
+
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
|
769 |
+
logger.warning(
|
770 |
+
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
|
771 |
+
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
|
772 |
+
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
|
773 |
+
)
|
774 |
+
|
775 |
+
super().enable_sequential_cpu_offload(*args, **kwargs)
|
776 |
+
|
777 |
+
@torch.no_grad()
|
778 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
779 |
+
def __call__(
|
780 |
+
self,
|
781 |
+
prompt: Union[str, List[str]] = None,
|
782 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
783 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
784 |
+
height: Optional[int] = 512,
|
785 |
+
width: Optional[int] = 512,
|
786 |
+
num_inference_steps: int = 50,
|
787 |
+
sigmas: Optional[List[float]] = None,
|
788 |
+
guidance_scale: float = 3.5,
|
789 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
790 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
791 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
792 |
+
num_images_per_prompt: Optional[int] = 1,
|
793 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
794 |
+
latents: Optional[torch.FloatTensor] = None,
|
795 |
+
image: Optional[PipelineImageInput] = None,
|
796 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
797 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
798 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
799 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
800 |
+
output_type: Optional[str] = "pil",
|
801 |
+
return_dict: bool = True,
|
802 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
803 |
+
clip_skip: Optional[int] = None,
|
804 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
805 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
806 |
+
max_sequence_length: int = 256,
|
807 |
+
skip_guidance_layers: List[int] = None,
|
808 |
+
skip_layer_guidance_scale: float = 2.8,
|
809 |
+
skip_layer_guidance_stop: float = 0.2,
|
810 |
+
skip_layer_guidance_start: float = 0.01,
|
811 |
+
mu: Optional[float] = None,
|
812 |
+
):
|
813 |
+
r"""
|
814 |
+
Function invoked when calling the pipeline for generation.
|
815 |
+
|
816 |
+
Args:
|
817 |
+
prompt (`str` or `List[str]`, *optional*):
|
818 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
819 |
+
instead.
|
820 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
821 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
822 |
+
will be used instead
|
823 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
824 |
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
825 |
+
will be used instead
|
826 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
827 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
828 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
829 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
830 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
831 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
832 |
+
expense of slower inference.
|
833 |
+
sigmas (`List[float]`, *optional*):
|
834 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
835 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
836 |
+
will be used.
|
837 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
838 |
+
Guidance scale as defined in [Classifier-Free Diffusion
|
839 |
+
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
840 |
+
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
841 |
+
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
842 |
+
the text `prompt`, usually at the expense of lower image quality.
|
843 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
844 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
845 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
846 |
+
less than `1`).
|
847 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
848 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
849 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
850 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
851 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
852 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
853 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
854 |
+
The number of images to generate per prompt.
|
855 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
856 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
857 |
+
to make generation deterministic.
|
858 |
+
latents (`torch.FloatTensor`, *optional*):
|
859 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
860 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
861 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
862 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
863 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
864 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
865 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
866 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
867 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
868 |
+
argument.
|
869 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
870 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
871 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
872 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
873 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
874 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
875 |
+
input argument.
|
876 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
877 |
+
The output format of the generate image. Choose between
|
878 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
879 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
880 |
+
Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
|
881 |
+
a plain tuple.
|
882 |
+
joint_attention_kwargs (`dict`, *optional*):
|
883 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
884 |
+
`self.processor` in
|
885 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
886 |
+
callback_on_step_end (`Callable`, *optional*):
|
887 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
888 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
889 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
890 |
+
`callback_on_step_end_tensor_inputs`.
|
891 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
892 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
893 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
894 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
895 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
896 |
+
skip_guidance_layers (`List[int]`, *optional*):
|
897 |
+
A list of integers that specify layers to skip during guidance. If not provided, all layers will be
|
898 |
+
used for guidance. If provided, the guidance will only be applied to the layers specified in the list.
|
899 |
+
Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is [7, 8, 9].
|
900 |
+
skip_layer_guidance_scale (`int`, *optional*): The scale of the guidance for the layers specified in
|
901 |
+
`skip_guidance_layers`. The guidance will be applied to the layers specified in `skip_guidance_layers`
|
902 |
+
with a scale of `skip_layer_guidance_scale`. The guidance will be applied to the rest of the layers
|
903 |
+
with a scale of `1`.
|
904 |
+
skip_layer_guidance_stop (`int`, *optional*): The step at which the guidance for the layers specified in
|
905 |
+
`skip_guidance_layers` will stop. The guidance will be applied to the layers specified in
|
906 |
+
`skip_guidance_layers` until the fraction specified in `skip_layer_guidance_stop`. Recommended value by
|
907 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.2.
|
908 |
+
skip_layer_guidance_start (`int`, *optional*): The step at which the guidance for the layers specified in
|
909 |
+
`skip_guidance_layers` will start. The guidance will be applied to the layers specified in
|
910 |
+
`skip_guidance_layers` from the fraction specified in `skip_layer_guidance_start`. Recommended value by
|
911 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.01.
|
912 |
+
mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
|
913 |
+
|
914 |
+
Examples:
|
915 |
+
|
916 |
+
Returns:
|
917 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
|
918 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
|
919 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
920 |
+
"""
|
921 |
+
|
922 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
923 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
924 |
+
|
925 |
+
# 1. Check inputs. Raise error if not correct
|
926 |
+
self.check_inputs(
|
927 |
+
prompt,
|
928 |
+
prompt_2,
|
929 |
+
prompt_3,
|
930 |
+
height,
|
931 |
+
width,
|
932 |
+
negative_prompt=negative_prompt,
|
933 |
+
negative_prompt_2=negative_prompt_2,
|
934 |
+
negative_prompt_3=negative_prompt_3,
|
935 |
+
prompt_embeds=prompt_embeds,
|
936 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
937 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
938 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
939 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
940 |
+
max_sequence_length=max_sequence_length,
|
941 |
+
)
|
942 |
+
|
943 |
+
self._guidance_scale = guidance_scale
|
944 |
+
self._skip_layer_guidance_scale = skip_layer_guidance_scale
|
945 |
+
self._clip_skip = clip_skip
|
946 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
947 |
+
self._interrupt = False
|
948 |
+
|
949 |
+
# 2. Define call parameters
|
950 |
+
if prompt is not None and isinstance(prompt, str):
|
951 |
+
batch_size = 1
|
952 |
+
elif prompt is not None and isinstance(prompt, list):
|
953 |
+
batch_size = len(prompt)
|
954 |
+
else:
|
955 |
+
batch_size = prompt_embeds.shape[0]
|
956 |
+
|
957 |
+
device = self._execution_device
|
958 |
+
|
959 |
+
lora_scale = (
|
960 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
961 |
+
)
|
962 |
+
(
|
963 |
+
prompt_embeds,
|
964 |
+
negative_prompt_embeds,
|
965 |
+
pooled_prompt_embeds,
|
966 |
+
negative_pooled_prompt_embeds,
|
967 |
+
) = self.encode_prompt(
|
968 |
+
prompt=prompt,
|
969 |
+
prompt_2=prompt_2,
|
970 |
+
prompt_3=prompt_3,
|
971 |
+
negative_prompt=negative_prompt,
|
972 |
+
negative_prompt_2=negative_prompt_2,
|
973 |
+
negative_prompt_3=negative_prompt_3,
|
974 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
975 |
+
prompt_embeds=prompt_embeds,
|
976 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
977 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
978 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
979 |
+
device=device,
|
980 |
+
clip_skip=self.clip_skip,
|
981 |
+
num_images_per_prompt=num_images_per_prompt,
|
982 |
+
max_sequence_length=max_sequence_length,
|
983 |
+
lora_scale=lora_scale,
|
984 |
+
)
|
985 |
+
|
986 |
+
if self.do_classifier_free_guidance:
|
987 |
+
if skip_guidance_layers is not None:
|
988 |
+
original_prompt_embeds = prompt_embeds
|
989 |
+
original_pooled_prompt_embeds = pooled_prompt_embeds
|
990 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
991 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
992 |
+
|
993 |
+
# 4. Prepare latent variables
|
994 |
+
num_channels_latents = self.transformer.config.in_channels
|
995 |
+
latents = self.prepare_latents(
|
996 |
+
batch_size * num_images_per_prompt,
|
997 |
+
num_channels_latents,
|
998 |
+
height,
|
999 |
+
width,
|
1000 |
+
prompt_embeds.dtype,
|
1001 |
+
device,
|
1002 |
+
generator,
|
1003 |
+
latents,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
# 5. Prepare timesteps
|
1007 |
+
scheduler_kwargs = {}
|
1008 |
+
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
|
1009 |
+
_, _, height, width = latents.shape
|
1010 |
+
image_seq_len = (height // self.transformer.config.patch_size) * (
|
1011 |
+
width // self.transformer.config.patch_size
|
1012 |
+
)
|
1013 |
+
mu = calculate_shift(
|
1014 |
+
image_seq_len,
|
1015 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
1016 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
1017 |
+
self.scheduler.config.get("base_shift", 0.5),
|
1018 |
+
self.scheduler.config.get("max_shift", 1.16),
|
1019 |
+
)
|
1020 |
+
scheduler_kwargs["mu"] = mu
|
1021 |
+
elif mu is not None:
|
1022 |
+
scheduler_kwargs["mu"] = mu
|
1023 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1024 |
+
self.scheduler,
|
1025 |
+
num_inference_steps,
|
1026 |
+
device,
|
1027 |
+
sigmas=sigmas,
|
1028 |
+
**scheduler_kwargs,
|
1029 |
+
)
|
1030 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1031 |
+
self._num_timesteps = len(timesteps)
|
1032 |
+
|
1033 |
+
# 6. Prepare image embeddings
|
1034 |
+
if image is not None:
|
1035 |
+
if not isinstance(image, (list, tuple)):
|
1036 |
+
image = (image,)
|
1037 |
+
assert image[0].height == height and image[0].width == width
|
1038 |
+
image = pil_list_to_tensor(image).to(device=self.transformer.device,
|
1039 |
+
dtype=self.transformer.dtype)
|
1040 |
+
|
1041 |
+
image_latents = self.vae.encode(image).latent_dist.sample()
|
1042 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
1043 |
+
|
1044 |
+
image_latents = image_latents[:, None].expand(-1, num_images_per_prompt, -1, -1, -1)
|
1045 |
+
image_latents = image_latents.flatten(0, 1)
|
1046 |
+
else:
|
1047 |
+
image_latents = None
|
1048 |
+
|
1049 |
+
# 7. Denoising loop
|
1050 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1051 |
+
for i, t in enumerate(timesteps):
|
1052 |
+
if self.interrupt:
|
1053 |
+
continue
|
1054 |
+
|
1055 |
+
# expand the latents if we are doing classifier free guidance
|
1056 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1057 |
+
if image_latents is not None:
|
1058 |
+
ref_latent_model_input = torch.cat([image_latents] * 2) if self.do_classifier_free_guidance else image_latents
|
1059 |
+
else:
|
1060 |
+
ref_latent_model_input = None
|
1061 |
+
|
1062 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1063 |
+
timestep = t.expand(latent_model_input.shape[0])
|
1064 |
+
|
1065 |
+
noise_pred = self.transformer(
|
1066 |
+
hidden_states=latent_model_input,
|
1067 |
+
ref_hidden_states=ref_latent_model_input,
|
1068 |
+
timestep=timestep,
|
1069 |
+
encoder_hidden_states=prompt_embeds,
|
1070 |
+
pooled_projections=pooled_prompt_embeds,
|
1071 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1072 |
+
return_dict=False,
|
1073 |
+
)[0]
|
1074 |
+
|
1075 |
+
# perform guidance
|
1076 |
+
if self.do_classifier_free_guidance:
|
1077 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1078 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1079 |
+
should_skip_layers = (
|
1080 |
+
True
|
1081 |
+
if i > num_inference_steps * skip_layer_guidance_start
|
1082 |
+
and i < num_inference_steps * skip_layer_guidance_stop
|
1083 |
+
else False
|
1084 |
+
)
|
1085 |
+
if skip_guidance_layers is not None and should_skip_layers:
|
1086 |
+
timestep = t.expand(latents.shape[0])
|
1087 |
+
latent_model_input = latents
|
1088 |
+
noise_pred_skip_layers = self.transformer(
|
1089 |
+
hidden_states=latent_model_input,
|
1090 |
+
timestep=timestep,
|
1091 |
+
encoder_hidden_states=original_prompt_embeds,
|
1092 |
+
pooled_projections=original_pooled_prompt_embeds,
|
1093 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1094 |
+
return_dict=False,
|
1095 |
+
skip_layers=skip_guidance_layers,
|
1096 |
+
)[0]
|
1097 |
+
noise_pred = (
|
1098 |
+
noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1102 |
+
latents_dtype = latents.dtype
|
1103 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1104 |
+
|
1105 |
+
if latents.dtype != latents_dtype:
|
1106 |
+
if torch.backends.mps.is_available():
|
1107 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1108 |
+
latents = latents.to(latents_dtype)
|
1109 |
+
|
1110 |
+
if callback_on_step_end is not None:
|
1111 |
+
callback_kwargs = {}
|
1112 |
+
for k in callback_on_step_end_tensor_inputs:
|
1113 |
+
callback_kwargs[k] = locals()[k]
|
1114 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1115 |
+
|
1116 |
+
latents = callback_outputs.pop("latents", latents)
|
1117 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1118 |
+
pooled_prompt_embeds = callback_outputs.pop("pooled_prompt_embeds", pooled_prompt_embeds)
|
1119 |
+
|
1120 |
+
# call the callback, if provided
|
1121 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1122 |
+
progress_bar.update()
|
1123 |
+
|
1124 |
+
if XLA_AVAILABLE:
|
1125 |
+
xm.mark_step()
|
1126 |
+
|
1127 |
+
if output_type == "latent":
|
1128 |
+
image = latents
|
1129 |
+
|
1130 |
+
else:
|
1131 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1132 |
+
|
1133 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1134 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1135 |
+
|
1136 |
+
# Offload all models
|
1137 |
+
self.maybe_free_model_hooks()
|
1138 |
+
|
1139 |
+
if not return_dict:
|
1140 |
+
return (image,)
|
1141 |
+
|
1142 |
+
return StableDiffusion3PipelineOutput(images=image)
|
unipicv2/stable_diffusion_3_conditioner.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
# from transformers.modeling_utils import PreTrainedModel
|
4 |
+
from diffusers.configuration_utils import register_to_config, ConfigMixin
|
5 |
+
from unipicv2.modeling_connector import ConnectorEncoder
|
6 |
+
from unipicv2.configuration_connector import ConnectorConfig
|
7 |
+
from diffusers.models.modeling_utils import ModelMixin
|
8 |
+
|
9 |
+
|
10 |
+
class StableDiffusion3Conditioner(ModelMixin, ConfigMixin):
|
11 |
+
model_type: str = "sd3_conditioner" # stored into config for hub niceties
|
12 |
+
|
13 |
+
@register_to_config
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
connector_config: dict, # dict passed to ConnectorConfig(**connector)
|
17 |
+
num_queries: int = 256,
|
18 |
+
llm_hidden_size: int = 3584,
|
19 |
+
pooled_projection_dim: int = 2048,
|
20 |
+
joint_attention_dim: int = 4096,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self.connector = ConnectorEncoder(ConnectorConfig(**connector_config))
|
25 |
+
self.projector_1 = nn.Linear(llm_hidden_size, self.connector.config.hidden_size)
|
26 |
+
self.projector_2 = nn.Linear(self.connector.config.hidden_size, pooled_projection_dim)
|
27 |
+
self.projector_3 = nn.Linear(self.connector.config.hidden_size, joint_attention_dim)
|
28 |
+
self.meta_queries = nn.Parameter(torch.zeros(num_queries, llm_hidden_size))
|
29 |
+
|
30 |
+
def _init_weights(self, module):
|
31 |
+
pass
|
32 |
+
|
33 |
+
def forward(self, x: torch.Tensor):
|
34 |
+
"""
|
35 |
+
x: (batch, seq_len, llm_hidden_size)
|
36 |
+
Returns:
|
37 |
+
prompt_embeds: (batch, seq_len, joint_attention_dim)
|
38 |
+
pooled_prompt_embeds: (batch, pooled_projection_dim)
|
39 |
+
"""
|
40 |
+
x = self.projector_1(x)
|
41 |
+
x = self.connector(x) # expects (B, L, hidden)
|
42 |
+
pooled_prompt_embeds = self.projector_2(x.mean(1))
|
43 |
+
prompt_embeds = self.projector_3(x)
|
44 |
+
|
45 |
+
return prompt_embeds, pooled_prompt_embeds
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
import torch
|
51 |
+
import argparse
|
52 |
+
import os
|
53 |
+
|
54 |
+
parser = argparse.ArgumentParser()
|
55 |
+
parser.add_argument("--checkpoint", type=str, default=None)
|
56 |
+
parser.add_argument("--output", type=str, default=None)
|
57 |
+
|
58 |
+
args = parser.parse_args()
|
59 |
+
|
60 |
+
pretrained_model_name_or_path = "stabilityai/stable-diffusion-3.5-medium"
|
61 |
+
|
62 |
+
conditioner = StableDiffusion3Conditioner(
|
63 |
+
num_queries=256,
|
64 |
+
connector_config=dict(
|
65 |
+
hidden_size=1536,
|
66 |
+
intermediate_size=8960,
|
67 |
+
num_hidden_layers=24,
|
68 |
+
_attn_implementation='flash_attention_2',
|
69 |
+
num_attention_heads=24, ),
|
70 |
+
llm_hidden_size=3584,
|
71 |
+
pooled_projection_dim=2048,
|
72 |
+
joint_attention_dim=4096,
|
73 |
+
).bfloat16()
|
74 |
+
|
75 |
+
checkpoint = torch.load(args.checkpoint)
|
76 |
+
|
77 |
+
info = conditioner.load_state_dict(checkpoint, strict=False)
|
78 |
+
import pdb; pdb.set_trace()
|
79 |
+
|
80 |
+
os.makedirs(args.output, exist_ok=True)
|
81 |
+
|
82 |
+
conditioner.save_pretrained(args.output)
|
unipicv2/transformer_sd3_kontext.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
7 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin, SD3Transformer2DLoadersMixin
|
8 |
+
from diffusers.models.attention import FeedForward, JointTransformerBlock
|
9 |
+
from diffusers.models.attention_processor import (
|
10 |
+
Attention,
|
11 |
+
AttentionProcessor,
|
12 |
+
FusedJointAttnProcessor2_0,
|
13 |
+
JointAttnProcessor2_0,
|
14 |
+
)
|
15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
16 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero
|
17 |
+
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
18 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
19 |
+
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
20 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
24 |
+
|
25 |
+
|
26 |
+
@maybe_allow_in_graph
|
27 |
+
class SD3SingleTransformerBlock(nn.Module):
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
dim: int,
|
31 |
+
num_attention_heads: int,
|
32 |
+
attention_head_dim: int,
|
33 |
+
):
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.norm1 = AdaLayerNormZero(dim)
|
37 |
+
self.attn = Attention(
|
38 |
+
query_dim=dim,
|
39 |
+
dim_head=attention_head_dim,
|
40 |
+
heads=num_attention_heads,
|
41 |
+
out_dim=dim,
|
42 |
+
bias=True,
|
43 |
+
processor=JointAttnProcessor2_0(),
|
44 |
+
eps=1e-6,
|
45 |
+
)
|
46 |
+
|
47 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
48 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
49 |
+
|
50 |
+
def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor):
|
51 |
+
# 1. Attention
|
52 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
53 |
+
attn_output = self.attn(hidden_states=norm_hidden_states, encoder_hidden_states=None)
|
54 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
55 |
+
hidden_states = hidden_states + attn_output
|
56 |
+
|
57 |
+
# 2. Feed Forward
|
58 |
+
norm_hidden_states = self.norm2(hidden_states)
|
59 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
60 |
+
ff_output = self.ff(norm_hidden_states)
|
61 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
62 |
+
hidden_states = hidden_states + ff_output
|
63 |
+
|
64 |
+
return hidden_states
|
65 |
+
|
66 |
+
|
67 |
+
class SD3Transformer2DKontextModel(
|
68 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin
|
69 |
+
):
|
70 |
+
"""
|
71 |
+
The Transformer model introduced in [Stable Diffusion 3](https://huggingface.co/papers/2403.03206).
|
72 |
+
|
73 |
+
Parameters:
|
74 |
+
sample_size (`int`, defaults to `128`):
|
75 |
+
The width/height of the latents. This is fixed during training since it is used to learn a number of
|
76 |
+
position embeddings.
|
77 |
+
patch_size (`int`, defaults to `2`):
|
78 |
+
Patch size to turn the input data into small patches.
|
79 |
+
in_channels (`int`, defaults to `16`):
|
80 |
+
The number of latent channels in the input.
|
81 |
+
num_layers (`int`, defaults to `18`):
|
82 |
+
The number of layers of transformer blocks to use.
|
83 |
+
attention_head_dim (`int`, defaults to `64`):
|
84 |
+
The number of channels in each head.
|
85 |
+
num_attention_heads (`int`, defaults to `18`):
|
86 |
+
The number of heads to use for multi-head attention.
|
87 |
+
joint_attention_dim (`int`, defaults to `4096`):
|
88 |
+
The embedding dimension to use for joint text-image attention.
|
89 |
+
caption_projection_dim (`int`, defaults to `1152`):
|
90 |
+
The embedding dimension of caption embeddings.
|
91 |
+
pooled_projection_dim (`int`, defaults to `2048`):
|
92 |
+
The embedding dimension of pooled text projections.
|
93 |
+
out_channels (`int`, defaults to `16`):
|
94 |
+
The number of latent channels in the output.
|
95 |
+
pos_embed_max_size (`int`, defaults to `96`):
|
96 |
+
The maximum latent height/width of positional embeddings.
|
97 |
+
dual_attention_layers (`Tuple[int, ...]`, defaults to `()`):
|
98 |
+
The number of dual-stream transformer blocks to use.
|
99 |
+
qk_norm (`str`, *optional*, defaults to `None`):
|
100 |
+
The normalization to use for query and key in the attention layer. If `None`, no normalization is used.
|
101 |
+
"""
|
102 |
+
|
103 |
+
_supports_gradient_checkpointing = True
|
104 |
+
_no_split_modules = ["JointTransformerBlock"]
|
105 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
106 |
+
|
107 |
+
@register_to_config
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
sample_size: int = 128,
|
111 |
+
patch_size: int = 2,
|
112 |
+
in_channels: int = 16,
|
113 |
+
num_layers: int = 18,
|
114 |
+
attention_head_dim: int = 64,
|
115 |
+
num_attention_heads: int = 18,
|
116 |
+
joint_attention_dim: int = 4096,
|
117 |
+
caption_projection_dim: int = 1152,
|
118 |
+
pooled_projection_dim: int = 2048,
|
119 |
+
out_channels: int = 16,
|
120 |
+
pos_embed_max_size: int = 96,
|
121 |
+
dual_attention_layers: Tuple[
|
122 |
+
int, ...
|
123 |
+
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
|
124 |
+
qk_norm: Optional[str] = None,
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
self.out_channels = out_channels if out_channels is not None else in_channels
|
128 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
129 |
+
|
130 |
+
self.pos_embed = PatchEmbed(
|
131 |
+
height=sample_size,
|
132 |
+
width=sample_size,
|
133 |
+
patch_size=patch_size,
|
134 |
+
in_channels=in_channels,
|
135 |
+
embed_dim=self.inner_dim,
|
136 |
+
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
137 |
+
)
|
138 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
139 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
140 |
+
)
|
141 |
+
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
|
142 |
+
|
143 |
+
self.transformer_blocks = nn.ModuleList(
|
144 |
+
[
|
145 |
+
JointTransformerBlock(
|
146 |
+
dim=self.inner_dim,
|
147 |
+
num_attention_heads=num_attention_heads,
|
148 |
+
attention_head_dim=attention_head_dim,
|
149 |
+
context_pre_only=i == num_layers - 1,
|
150 |
+
qk_norm=qk_norm,
|
151 |
+
use_dual_attention=True if i in dual_attention_layers else False,
|
152 |
+
)
|
153 |
+
for i in range(num_layers)
|
154 |
+
]
|
155 |
+
)
|
156 |
+
|
157 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
158 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
159 |
+
|
160 |
+
self.gradient_checkpointing = False
|
161 |
+
|
162 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
163 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
164 |
+
"""
|
165 |
+
Sets the attention processor to use [feed forward
|
166 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
167 |
+
|
168 |
+
Parameters:
|
169 |
+
chunk_size (`int`, *optional*):
|
170 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
171 |
+
over each tensor of dim=`dim`.
|
172 |
+
dim (`int`, *optional*, defaults to `0`):
|
173 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
174 |
+
or dim=1 (sequence length).
|
175 |
+
"""
|
176 |
+
if dim not in [0, 1]:
|
177 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
178 |
+
|
179 |
+
# By default chunk size is 1
|
180 |
+
chunk_size = chunk_size or 1
|
181 |
+
|
182 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
183 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
184 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
185 |
+
|
186 |
+
for child in module.children():
|
187 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
188 |
+
|
189 |
+
for module in self.children():
|
190 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
191 |
+
|
192 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
|
193 |
+
def disable_forward_chunking(self):
|
194 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
195 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
196 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
197 |
+
|
198 |
+
for child in module.children():
|
199 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
200 |
+
|
201 |
+
for module in self.children():
|
202 |
+
fn_recursive_feed_forward(module, None, 0)
|
203 |
+
|
204 |
+
@property
|
205 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
206 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
207 |
+
r"""
|
208 |
+
Returns:
|
209 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
210 |
+
indexed by its weight name.
|
211 |
+
"""
|
212 |
+
# set recursively
|
213 |
+
processors = {}
|
214 |
+
|
215 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
216 |
+
if hasattr(module, "get_processor"):
|
217 |
+
processors[f"{name}.processor"] = module.get_processor()
|
218 |
+
|
219 |
+
for sub_name, child in module.named_children():
|
220 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
221 |
+
|
222 |
+
return processors
|
223 |
+
|
224 |
+
for name, module in self.named_children():
|
225 |
+
fn_recursive_add_processors(name, module, processors)
|
226 |
+
|
227 |
+
return processors
|
228 |
+
|
229 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
230 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
231 |
+
r"""
|
232 |
+
Sets the attention processor to use to compute attention.
|
233 |
+
|
234 |
+
Parameters:
|
235 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
236 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
237 |
+
for **all** `Attention` layers.
|
238 |
+
|
239 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
240 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
241 |
+
|
242 |
+
"""
|
243 |
+
count = len(self.attn_processors.keys())
|
244 |
+
|
245 |
+
if isinstance(processor, dict) and len(processor) != count:
|
246 |
+
raise ValueError(
|
247 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
248 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
249 |
+
)
|
250 |
+
|
251 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
252 |
+
if hasattr(module, "set_processor"):
|
253 |
+
if not isinstance(processor, dict):
|
254 |
+
module.set_processor(processor)
|
255 |
+
else:
|
256 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
257 |
+
|
258 |
+
for sub_name, child in module.named_children():
|
259 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
260 |
+
|
261 |
+
for name, module in self.named_children():
|
262 |
+
fn_recursive_attn_processor(name, module, processor)
|
263 |
+
|
264 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
|
265 |
+
def fuse_qkv_projections(self):
|
266 |
+
"""
|
267 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
268 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
269 |
+
|
270 |
+
<Tip warning={true}>
|
271 |
+
|
272 |
+
This API is 🧪 experimental.
|
273 |
+
|
274 |
+
</Tip>
|
275 |
+
"""
|
276 |
+
self.original_attn_processors = None
|
277 |
+
|
278 |
+
for _, attn_processor in self.attn_processors.items():
|
279 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
280 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
281 |
+
|
282 |
+
self.original_attn_processors = self.attn_processors
|
283 |
+
|
284 |
+
for module in self.modules():
|
285 |
+
if isinstance(module, Attention):
|
286 |
+
module.fuse_projections(fuse=True)
|
287 |
+
|
288 |
+
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
289 |
+
|
290 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
291 |
+
def unfuse_qkv_projections(self):
|
292 |
+
"""Disables the fused QKV projection if enabled.
|
293 |
+
|
294 |
+
<Tip warning={true}>
|
295 |
+
|
296 |
+
This API is 🧪 experimental.
|
297 |
+
|
298 |
+
</Tip>
|
299 |
+
|
300 |
+
"""
|
301 |
+
if self.original_attn_processors is not None:
|
302 |
+
self.set_attn_processor(self.original_attn_processors)
|
303 |
+
|
304 |
+
def forward(
|
305 |
+
self,
|
306 |
+
hidden_states: torch.Tensor,
|
307 |
+
encoder_hidden_states: torch.Tensor = None,
|
308 |
+
ref_hidden_states: torch.Tensor = None,
|
309 |
+
pooled_projections: torch.Tensor = None,
|
310 |
+
timestep: torch.LongTensor = None,
|
311 |
+
block_controlnet_hidden_states: List = None,
|
312 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
313 |
+
return_dict: bool = True,
|
314 |
+
skip_layers: Optional[List[int]] = None,
|
315 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
316 |
+
"""
|
317 |
+
The [`SD3Transformer2DModel`] forward method.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`):
|
321 |
+
Input `hidden_states`.
|
322 |
+
ref_hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`):
|
323 |
+
Input `ref_hidden_states`.
|
324 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
|
325 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
326 |
+
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`):
|
327 |
+
Embeddings projected from the embeddings of input conditions.
|
328 |
+
timestep (`torch.LongTensor`):
|
329 |
+
Used to indicate denoising step.
|
330 |
+
block_controlnet_hidden_states (`list` of `torch.Tensor`):
|
331 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
332 |
+
joint_attention_kwargs (`dict`, *optional*):
|
333 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
334 |
+
`self.processor` in
|
335 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
336 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
337 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
338 |
+
tuple.
|
339 |
+
skip_layers (`list` of `int`, *optional*):
|
340 |
+
A list of layer indices to skip during the forward pass.
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
344 |
+
`tuple` where the first element is the sample tensor.
|
345 |
+
"""
|
346 |
+
if joint_attention_kwargs is not None:
|
347 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
348 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
349 |
+
else:
|
350 |
+
lora_scale = 1.0
|
351 |
+
|
352 |
+
if USE_PEFT_BACKEND:
|
353 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
354 |
+
scale_lora_layers(self, lora_scale)
|
355 |
+
else:
|
356 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
357 |
+
logger.warning(
|
358 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
359 |
+
)
|
360 |
+
|
361 |
+
height, width = hidden_states.shape[-2:]
|
362 |
+
|
363 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
364 |
+
if ref_hidden_states is not None:
|
365 |
+
ref_hidden_states = self.pos_embed(ref_hidden_states)
|
366 |
+
assert ref_hidden_states.shape == hidden_states.shape
|
367 |
+
hidden_states = torch.cat([ref_hidden_states, hidden_states], dim=1)
|
368 |
+
|
369 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
370 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
371 |
+
|
372 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
373 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
374 |
+
ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep)
|
375 |
+
|
376 |
+
joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb)
|
377 |
+
|
378 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
379 |
+
# Skip specified layers
|
380 |
+
is_skip = True if skip_layers is not None and index_block in skip_layers else False
|
381 |
+
|
382 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip:
|
383 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
384 |
+
block,
|
385 |
+
hidden_states,
|
386 |
+
encoder_hidden_states,
|
387 |
+
temb,
|
388 |
+
joint_attention_kwargs,
|
389 |
+
)
|
390 |
+
elif not is_skip:
|
391 |
+
encoder_hidden_states, hidden_states = block(
|
392 |
+
hidden_states=hidden_states,
|
393 |
+
encoder_hidden_states=encoder_hidden_states,
|
394 |
+
temb=temb,
|
395 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
396 |
+
)
|
397 |
+
|
398 |
+
# controlnet residual
|
399 |
+
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
400 |
+
interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states)
|
401 |
+
hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)]
|
402 |
+
|
403 |
+
patch_size = self.config.patch_size
|
404 |
+
height = height // patch_size
|
405 |
+
width = width // patch_size
|
406 |
+
hidden_states = hidden_states[:, -height*width:, :]
|
407 |
+
|
408 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
409 |
+
hidden_states = self.proj_out(hidden_states)
|
410 |
+
|
411 |
+
# unpatchify
|
412 |
+
hidden_states = hidden_states.reshape(
|
413 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
414 |
+
)
|
415 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
416 |
+
output = hidden_states.reshape(
|
417 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
418 |
+
)
|
419 |
+
|
420 |
+
if USE_PEFT_BACKEND:
|
421 |
+
# remove `lora_scale` from each PEFT layer
|
422 |
+
unscale_lora_layers(self, lora_scale)
|
423 |
+
|
424 |
+
if not return_dict:
|
425 |
+
return (output,)
|
426 |
+
|
427 |
+
return Transformer2DModelOutput(sample=output)
|
428 |
+
|
429 |
+
|
430 |
+
if __name__ == "__main__":
|
431 |
+
import torch
|
432 |
+
import argparse
|
433 |
+
import os
|
434 |
+
|
435 |
+
parser = argparse.ArgumentParser()
|
436 |
+
parser.add_argument("--checkpoint", type=str, default=None)
|
437 |
+
parser.add_argument("--output", type=str, default=None)
|
438 |
+
|
439 |
+
args = parser.parse_args()
|
440 |
+
|
441 |
+
pretrained_model_name_or_path = "stabilityai/stable-diffusion-3.5-medium"
|
442 |
+
|
443 |
+
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
444 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
445 |
+
subfolder="transformer",
|
446 |
+
torch_dtype=torch.bfloat16)
|
447 |
+
|
448 |
+
checkpoint = torch.load(args.checkpoint)
|
449 |
+
checkpoint = {k[len('transformer.'):]: v for k, v in checkpoint.items() if 'transformer.' in k}
|
450 |
+
|
451 |
+
transformer.load_state_dict(checkpoint)
|
452 |
+
|
453 |
+
os.makedirs(args.output, exist_ok=True)
|
454 |
+
|
455 |
+
transformer.save_pretrained(args.output)
|
user.png
ADDED
![]() |