Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import ViTMAEForPreTraining, ViTFeatureExtractor
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# 加载模型和处理器
|
7 |
+
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base")
|
8 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("facebook/vit-mae-base")
|
9 |
+
|
10 |
+
def predict(image):
|
11 |
+
# 预处理图像
|
12 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
13 |
+
|
14 |
+
# 模型推理
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model(**inputs)
|
17 |
+
|
18 |
+
# 获取重建的图像(MAE 的输出是像素值)
|
19 |
+
reconstructed_pixel_values = outputs.logits # [1, 196, 768]
|
20 |
+
|
21 |
+
# 这里需要将输出转换为可显示的图像(示例简化,实际需调整)
|
22 |
+
# 注意:MAE 的输出需要后处理才能可视化,这里仅展示原始输出
|
23 |
+
return f"Output shape: {reconstructed_pixel_values.shape}"
|
24 |
+
|
25 |
+
# 创建 Gradio 界面
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=gr.Image(type="pil"),
|
29 |
+
outputs="text",
|
30 |
+
title="MAE (Masked Autoencoder) Demo",
|
31 |
+
description="Upload an image to see ViT-MAE model output.",
|
32 |
+
)
|
33 |
+
|
34 |
+
iface.launch()
|