Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,36 @@
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
-
from transformers import ViTMAEForPreTraining,
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
8 |
-
# 加载模型和处理器
|
9 |
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base")
|
10 |
-
feature_extractor =
|
11 |
|
12 |
def visualize_mae(image):
|
13 |
-
#
|
|
|
14 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
15 |
-
|
16 |
-
#
|
17 |
with torch.no_grad():
|
18 |
outputs = model(**inputs)
|
19 |
-
|
20 |
-
#
|
21 |
-
mask = outputs.mask
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
num_patches_h = h // patch_size
|
29 |
-
num_patches_w = w // patch_size
|
30 |
-
|
31 |
-
# 创建一个掩码图像(黑色表示被掩码的部分)
|
32 |
-
mask_image = np.zeros_like(image_np)
|
33 |
-
mask = mask[0].reshape(num_patches_h, num_patches_w)
|
34 |
-
for i in range(num_patches_h):
|
35 |
-
for j in range(num_patches_w):
|
36 |
-
if mask[i, j] == 1: # 被掩码的patch
|
37 |
-
mask_image[
|
38 |
-
i * patch_size : (i + 1) * patch_size,
|
39 |
-
j * patch_size : (j + 1) * patch_size,
|
40 |
-
] = 0
|
41 |
-
else:
|
42 |
-
mask_image[
|
43 |
-
i * patch_size : (i + 1) * patch_size,
|
44 |
-
j * patch_size : (j + 1) * patch_size,
|
45 |
-
] = image_np[
|
46 |
-
i * patch_size : (i + 1) * patch_size,
|
47 |
-
j * patch_size : (j + 1) * patch_size,
|
48 |
-
]
|
49 |
-
|
50 |
-
# 可视化结果(原始图像 + 掩码图像)
|
51 |
-
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
|
52 |
-
axes[0].imshow(image_np)
|
53 |
-
axes[0].set_title("Original Image")
|
54 |
-
axes[0].axis("off")
|
55 |
-
axes[1].imshow(mask_image)
|
56 |
-
axes[1].set_title("Masked Image (MAE Input)")
|
57 |
-
axes[1].axis("off")
|
58 |
-
plt.tight_layout()
|
59 |
-
return fig
|
60 |
|
61 |
iface = gr.Interface(
|
62 |
fn=visualize_mae,
|
63 |
inputs=gr.Image(type="pil"),
|
64 |
outputs="plot",
|
65 |
-
title="ViT-MAE
|
66 |
-
description="Upload an image to see
|
67 |
)
|
68 |
-
|
69 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
+
from transformers import ViTMAEForPreTraining, ViTImageProcessor
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
|
|
8 |
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base")
|
9 |
+
feature_extractor = ViTImageProcessor.from_pretrained("facebook/vit-mae-base")
|
10 |
|
11 |
def visualize_mae(image):
|
12 |
+
# 调整图像大小并预处理
|
13 |
+
image = image.resize((224, 224))
|
14 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
15 |
+
|
16 |
+
# 模型推理
|
17 |
with torch.no_grad():
|
18 |
outputs = model(**inputs)
|
19 |
+
|
20 |
+
# 获取掩码(14x14)
|
21 |
+
mask = outputs.mask[0].reshape(14, 14).cpu().numpy()
|
22 |
+
|
23 |
+
# 可视化
|
24 |
+
plt.imshow(mask, cmap="gray")
|
25 |
+
plt.title("MAE Mask (14x14)")
|
26 |
+
plt.axis("off")
|
27 |
+
return plt.gcf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
iface = gr.Interface(
|
30 |
fn=visualize_mae,
|
31 |
inputs=gr.Image(type="pil"),
|
32 |
outputs="plot",
|
33 |
+
title="ViT-MAE Mask Visualization",
|
34 |
+
description="Upload an image to see the MAE masking pattern.",
|
35 |
)
|
|
|
36 |
iface.launch()
|