Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline | |
from Amodal3R.representations import Gaussian, MeshExtractResult | |
from Amodal3R.utils import render_utils, postprocessing_utils | |
from segment_anything import sam_model_registry, SamPredictor | |
from huggingface_hub import hf_hub_download | |
import cv2 | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def select_point(predictor: SamPredictor, | |
annotated_img: np.ndarray, | |
orig_img: np.ndarray, | |
sel_pix: list, | |
point_type: str, | |
evt: gr.SelectData): | |
""" | |
当用户在标注图像上点击时: | |
- 将点击坐标添加到 sel_pix(正/负 prompt 根据 point_type), | |
- 根据 sel_pix 调用 SAM 得到 mask, | |
- 在 annotated_img 上绘制所有已选点的标记, | |
- 返回更新后的标注图像、SAM 输出(用于显示)及生成的 visible_mask(用于后续 pix2gestalt)。 | |
""" | |
# 拷贝原图(用于标注) | |
img = annotated_img.copy() | |
h_original, w_original, _ = orig_img.shape | |
h_new, w_new = 256, 256 | |
scale_x = w_new / w_original | |
scale_y = h_new / h_original | |
# 根据 prompt 类型添加点击点(evt.index 格式为 (x, y)) | |
if point_type == 'positive_prompt': | |
sel_pix.append((evt.index, 1)) | |
elif point_type == 'negative_prompt': | |
sel_pix.append((evt.index, 0)) | |
else: | |
sel_pix.append((evt.index, 1)) | |
# 将原始尺寸的点转换到 256x256 尺寸(SAM 输入要求) | |
processed_sel_pix = [] | |
for point, label in sel_pix: | |
x, y = point | |
new_x = int(x * scale_x) | |
new_y = int(y * scale_y) | |
processed_sel_pix.append(([new_x, new_y], label)) | |
visible_mask, overlay_mask = run_sam(predictor, processed_sel_pix) | |
# overlay_mask 是 SAM 输出的 mask(256x256),调整尺寸到原图尺寸以便显示 | |
mask = np.squeeze(overlay_mask[0][0]) # (256, 256) | |
resized_mask = cv2.resize(mask.astype(np.uint8) * 255, (w_original, h_original), interpolation=cv2.INTER_AREA) | |
resized_mask = resized_mask > 127 | |
# 制作 overlay 信息(供 output_mask 使用) | |
resized_overlay_mask = [(resized_mask, 'visible_mask')] | |
# 绘制所有点的标记 | |
COLORS = [(255, 0, 0), (0, 255, 0)] | |
MARKERS = [1, 4] | |
scaling_factor = min(h_original / 256, w_original / 256) | |
marker_size = int(6 * scaling_factor) | |
marker_thickness = int(2 * scaling_factor) | |
for point, label in sel_pix: | |
cv2.drawMarker(img, tuple(point), COLORS[label], markerType=MARKERS[label], | |
markerSize=marker_size, thickness=marker_thickness) | |
return img, (orig_img, resized_overlay_mask), visible_mask | |
def undo_points(predictor, orig_img, sel_pix): | |
""" | |
撤销最后一次点击: | |
- 从 sel_pix 中 pop 出最后一个点, | |
- 根据剩余点重新调用 SAM 得到 mask, | |
- 返回更新后的图像和 mask。 | |
""" | |
temp = orig_img.copy() | |
h_original, w_original, _ = orig_img.shape | |
COLORS = [(255, 0, 0), (0, 255, 0)] | |
MARKERS = [0, 5] | |
scaling_factor = min(h_original / 256, w_original / 256) | |
marker_size = int(6 * scaling_factor) | |
marker_thickness = int(2 * scaling_factor) | |
if len(sel_pix) > 0: | |
sel_pix.pop() | |
# 重新绘制剩余点 | |
for point, label in sel_pix: | |
cv2.drawMarker(temp, tuple(point), COLORS[label], | |
markerType=MARKERS[label], markerSize=marker_size, thickness=marker_thickness) | |
else: | |
dummy_overlay_mask = [(np.zeros((h_original, w_original), dtype=np.uint8), 'visible_mask')] | |
return orig_img, (orig_img, dummy_overlay_mask), [] | |
visible_mask, overlay_mask = run_sam(predictor, sel_pix) | |
mask = np.squeeze(overlay_mask[0][0]) | |
resized_mask = cv2.resize(mask.astype(np.uint8) * 255, (w_original, h_original), interpolation=cv2.INTER_AREA) | |
resized_mask = resized_mask > 127 | |
resized_overlay_mask = [(resized_mask, 'visible_mask')] | |
return temp, (orig_img, resized_overlay_mask), visible_mask | |
def reset_image(predictor, img): | |
""" | |
上传图像后调用: | |
- 重置 predictor, | |
- 设置 predictor 的输入图像, | |
- 返回原图 | |
""" | |
predictor.set_image(img) | |
# 返回predictor,原始图像 | |
return predictor, img | |
def button_clickable(selected_points): | |
if len(selected_points) > 0: | |
return gr.Button.update(interactive=True) | |
else: | |
return gr.Button.update(interactive=False) | |
def run_sam(predictor: SamPredictor, image, selected_points): | |
""" | |
调用 SAM 模型进行分割。 | |
""" | |
# 确保图像为 RGB 模式 | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
if image.mode != 'RGB': | |
image = image.convert("RGB") | |
if len(selected_points) == 0: | |
return [], None | |
input_points = [p for p, _ in selected_points] | |
input_labels = [int(l) for _, l in selected_points] | |
masks, _, _ = predictor.predict( | |
point_coords=np.array(input_points), | |
point_labels=input_labels, | |
multimask_output=False, # 单对象输出 | |
) | |
visible_mask = 255 * np.squeeze(masks).astype(np.uint8) | |
return visible_mask, None | |
def apply_mask_overlay(image: Image.Image, mask: np.ndarray) -> Image.Image: | |
""" | |
在原图上叠加 mask:使用红色绘制 mask 的轮廓,非 mask 区域叠加浅灰色半透明遮罩。 | |
""" | |
img_arr = np.array(image) | |
if mask.ndim == 3: | |
mask = mask[:, :, 0] | |
overlay = img_arr.copy() | |
gray_color = np.array([200, 200, 200], dtype=np.uint8) | |
non_mask = mask == 0 | |
overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8) | |
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
cv2.drawContours(overlay, contours, -1, (255, 0, 0), 2) | |
return Image.fromarray(overlay) | |
def segment_and_overlay(image: np.ndarray, points): | |
""" | |
调用 run_sam 获得 mask,然后叠加显示分割结果。 | |
""" | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
mask, _ = run_sam(sam_predictor, image, points) | |
if mask == []: | |
return image | |
overlaid = apply_mask_overlay(image, mask) | |
return overlaid | |
def reset_points(): | |
""" | |
清空点击点提示。 | |
""" | |
return [], "" | |
def image_to_3d( | |
image: Image.Image, | |
multiimages: List[tuple], | |
is_multiimage: bool, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
multiimage_algo: str, | |
req: gr.Request, | |
) -> tuple: | |
""" | |
将图像转换为 3D 模型。 | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
if not is_multiimage: | |
outputs = pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
else: | |
outputs = pipeline.run_multi_image( | |
[img[0] for img in multiimages], | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
mode=multiimage_algo, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> tuple: | |
""" | |
从生成的 3D 模型中提取 GLB 文件。 | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian(state: dict, req: gr.Request) -> tuple: | |
""" | |
从生成的 3D 模型中提取 Gaussian 文件。 | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, _ = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> tuple: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def prepare_multi_example() -> list: | |
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) | |
images = [] | |
for case in multi_case: | |
_images = [] | |
for i in range(1, 4): | |
img = Image.open(f'assets/example_multi_image/{case}_{i}.png') | |
W, H = img.size | |
img = img.resize((int(W / H * 512), 512)) | |
_images.append(np.array(img)) | |
images.append(Image.fromarray(np.concatenate(_images, axis=1))) | |
return images | |
def split_image(image: Image.Image) -> list: | |
""" | |
将图像拆分为多个视图(不进行预处理)。 | |
""" | |
image = np.array(image) | |
alpha = image[..., 3] | |
alpha = np.any(alpha > 0, axis=0) | |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() | |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() | |
images = [] | |
for s, e in zip(start_pos, end_pos): | |
images.append(Image.fromarray(image[:, s:e+1])) | |
return [image for image in images] | |
def get_sam_predictor(): | |
sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth") | |
model_type = "vit_h" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.cuda() | |
sam_predictor = SamPredictor(sam) | |
return sam_predictor | |
def draw_points_on_image(image, point, point_type): | |
"""在图像上绘制所有点,points 为 [(x, y, point_type), ...]""" | |
image_with_points = image.copy() | |
x, y = point | |
color = (0, 0, 255) if point_type == "visible" else (0, 255, 0) | |
cv2.circle(image_with_points, (int(x), int(y)), radius=5, color=color, thickness=-1) | |
return image_with_points | |
def see_point(image, x, y, point_type): | |
""" | |
see操作:不修改 points 列表,仅在图像上临时显示这个点, | |
并返回更新后的图像和当前列表(不更新)。 | |
""" | |
# 复制当前列表,并在副本中加上新点(仅用于显示) | |
updated_image = draw_points_on_image(image, [x,y], point_type) | |
return updated_image | |
def add_point(x, y, point_type, visible_points, occlusion_points): | |
""" | |
add操作:将新点添加到 points 列表中, | |
并返回更新后的图像和新的点列表。 | |
""" | |
if point_type == "visible": | |
visible_points.append([x, y]) | |
else: | |
occlusion_points.append([x, y]) | |
return visible_points, occlusion_points | |
def delete_point(point_type, visible_points, occlusion_points): | |
""" | |
delete操作:删除 points 列表中的最后一个点, | |
并返回更新后的图像和新的点列表。 | |
""" | |
if point_type == "visible": | |
visible_points.pop() | |
else: | |
occlusion_points.pop() | |
return visible_points, occlusion_points | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/) | |
* Upload an image and click "Generate" to create a 3D asset. | |
* Target object selection. Multiple point prompts are supported until you get the ideal visible area. | |
* Occluders selection, this can be done by squential point prompts. You can choose "all occ", then all the other areas except the target object will be treated as occluders. | |
* Different random seeds can be tried in "Generation Settings", if you think the results are not ideal. | |
* If the reconstruction 3D asset is satisfactory, you can extract the GLB file and download it. | |
""") | |
# 定义各状态变量 | |
predictor = gr.State(value=get_sam_predictor()) | |
visible_points_state = gr.State(value=[]) | |
occlusion_points_state = gr.State(value=[]) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="numpy", label='Input Occlusion Image', height=300) | |
fg_bg_radio = gr.Radio(['positive_prompt', 'negative_prompt'], label='Point Prompt Type') | |
with gr.Row(): | |
x_input = gr.Number(label="X Coordinate", value=0) | |
y_input = gr.Number(label="Y Coordinate", value=0) | |
point_type = gr.Radio(choices=["visible", "occlusion"], label="Point Type", value="visible") | |
with gr.Row(): | |
see_button = gr.Button("See") | |
add_button = gr.Button("Add") | |
delete_button = gr.Button("Delete") | |
with gr.Column(): | |
# 显示 SAM 分割结果(带 overlay)—— 使用 AnnotatedImage 显示更直观 | |
sam_image = gr.Image(label='SAM Generated Mask', interactive=False, height=300) | |
# 会话启动与结束 | |
demo.load(start_session) | |
demo.unload(end_session) | |
# 上传图像时:重置 predictor 并将原图赋值给 original_image、preprocessed_image、selected_points 以及 output_mask | |
input_image.upload( | |
reset_image, | |
[predictor, input_image], | |
[predictor, sam_image] | |
) | |
# 如果点击see按钮,应该在input图片上生成对应的点, | |
see_button.click( | |
see_point, | |
inputs=[input_image, x_input, y_input, point_type], | |
outputs=[input_image] | |
) | |
# 如果点击add按钮,应该将对应的点添加到visible_points_state中 | |
add_button.click( | |
add_point, | |
inputs=[x_input, y_input, point_type, visible_points_state, occlusion_points_state], | |
outputs=[visible_points_state, occlusion_points_state] | |
) | |
delete_button.click( | |
delete_point, | |
inputs=[point_type, visible_points_state, occlusion_points_state], | |
outputs=[visible_points_state, occlusion_points_state] | |
) | |
# 启动 Gradio App | |
if __name__ == "__main__": | |
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
except: | |
pass | |
demo.launch() | |