Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,404 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from gradio_litmodel3d import LitModel3D
|
4 |
+
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
os.environ['SPCONV_ALGO'] = 'native'
|
8 |
+
from typing import *
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
import imageio
|
12 |
+
from easydict import EasyDict as edict
|
13 |
+
from PIL import Image
|
14 |
+
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
|
15 |
+
from Amodal3R.representations import Gaussian, MeshExtractResult
|
16 |
+
from Amodal3R.utils import render_utils, postprocessing_utils
|
17 |
+
|
18 |
+
|
19 |
+
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
21 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
+
|
23 |
+
|
24 |
+
def start_session(req: gr.Request):
|
25 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
26 |
+
os.makedirs(user_dir, exist_ok=True)
|
27 |
+
|
28 |
+
|
29 |
+
def end_session(req: gr.Request):
|
30 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
31 |
+
shutil.rmtree(user_dir)
|
32 |
+
|
33 |
+
|
34 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
+
"""
|
36 |
+
Preprocess the input image.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
image (Image.Image): The input image.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
Image.Image: The preprocessed image.
|
43 |
+
"""
|
44 |
+
processed_image = pipeline.preprocess_image(image)
|
45 |
+
return processed_image
|
46 |
+
|
47 |
+
|
48 |
+
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
49 |
+
"""
|
50 |
+
Preprocess a list of input images.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
images (List[Tuple[Image.Image, str]]): The input images.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
List[Image.Image]: The preprocessed images.
|
57 |
+
"""
|
58 |
+
images = [image[0] for image in images]
|
59 |
+
processed_images = [pipeline.preprocess_image(image) for image in images]
|
60 |
+
return processed_images
|
61 |
+
|
62 |
+
|
63 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
64 |
+
return {
|
65 |
+
'gaussian': {
|
66 |
+
**gs.init_params,
|
67 |
+
'_xyz': gs._xyz.cpu().numpy(),
|
68 |
+
'_features_dc': gs._features_dc.cpu().numpy(),
|
69 |
+
'_scaling': gs._scaling.cpu().numpy(),
|
70 |
+
'_rotation': gs._rotation.cpu().numpy(),
|
71 |
+
'_opacity': gs._opacity.cpu().numpy(),
|
72 |
+
},
|
73 |
+
'mesh': {
|
74 |
+
'vertices': mesh.vertices.cpu().numpy(),
|
75 |
+
'faces': mesh.faces.cpu().numpy(),
|
76 |
+
},
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
81 |
+
gs = Gaussian(
|
82 |
+
aabb=state['gaussian']['aabb'],
|
83 |
+
sh_degree=state['gaussian']['sh_degree'],
|
84 |
+
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
85 |
+
scaling_bias=state['gaussian']['scaling_bias'],
|
86 |
+
opacity_bias=state['gaussian']['opacity_bias'],
|
87 |
+
scaling_activation=state['gaussian']['scaling_activation'],
|
88 |
+
)
|
89 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
90 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
91 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
92 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
93 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
94 |
+
|
95 |
+
mesh = edict(
|
96 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
97 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
98 |
+
)
|
99 |
+
|
100 |
+
return gs, mesh
|
101 |
+
|
102 |
+
|
103 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
104 |
+
"""
|
105 |
+
Get the random seed.
|
106 |
+
"""
|
107 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
108 |
+
|
109 |
+
|
110 |
+
@spaces.GPU
|
111 |
+
def image_to_3d(
|
112 |
+
image: Image.Image,
|
113 |
+
multiimages: List[Tuple[Image.Image, str]],
|
114 |
+
is_multiimage: bool,
|
115 |
+
seed: int,
|
116 |
+
ss_guidance_strength: float,
|
117 |
+
ss_sampling_steps: int,
|
118 |
+
slat_guidance_strength: float,
|
119 |
+
slat_sampling_steps: int,
|
120 |
+
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
121 |
+
req: gr.Request,
|
122 |
+
) -> Tuple[dict, str]:
|
123 |
+
"""
|
124 |
+
Convert an image to a 3D model.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
image (Image.Image): The input image.
|
128 |
+
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
129 |
+
is_multiimage (bool): Whether is in multi-image mode.
|
130 |
+
seed (int): The random seed.
|
131 |
+
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
132 |
+
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
133 |
+
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
134 |
+
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
135 |
+
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
dict: The information of the generated 3D model.
|
139 |
+
str: The path to the video of the 3D model.
|
140 |
+
"""
|
141 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
142 |
+
if not is_multiimage:
|
143 |
+
outputs = pipeline.run(
|
144 |
+
image,
|
145 |
+
seed=seed,
|
146 |
+
formats=["gaussian", "mesh"],
|
147 |
+
preprocess_image=False,
|
148 |
+
sparse_structure_sampler_params={
|
149 |
+
"steps": ss_sampling_steps,
|
150 |
+
"cfg_strength": ss_guidance_strength,
|
151 |
+
},
|
152 |
+
slat_sampler_params={
|
153 |
+
"steps": slat_sampling_steps,
|
154 |
+
"cfg_strength": slat_guidance_strength,
|
155 |
+
},
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
outputs = pipeline.run_multi_image(
|
159 |
+
[image[0] for image in multiimages],
|
160 |
+
seed=seed,
|
161 |
+
formats=["gaussian", "mesh"],
|
162 |
+
preprocess_image=False,
|
163 |
+
sparse_structure_sampler_params={
|
164 |
+
"steps": ss_sampling_steps,
|
165 |
+
"cfg_strength": ss_guidance_strength,
|
166 |
+
},
|
167 |
+
slat_sampler_params={
|
168 |
+
"steps": slat_sampling_steps,
|
169 |
+
"cfg_strength": slat_guidance_strength,
|
170 |
+
},
|
171 |
+
mode=multiimage_algo,
|
172 |
+
)
|
173 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
174 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
175 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
176 |
+
video_path = os.path.join(user_dir, 'sample.mp4')
|
177 |
+
imageio.mimsave(video_path, video, fps=15)
|
178 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
179 |
+
torch.cuda.empty_cache()
|
180 |
+
return state, video_path
|
181 |
+
|
182 |
+
|
183 |
+
@spaces.GPU(duration=90)
|
184 |
+
def extract_glb(
|
185 |
+
state: dict,
|
186 |
+
mesh_simplify: float,
|
187 |
+
texture_size: int,
|
188 |
+
req: gr.Request,
|
189 |
+
) -> Tuple[str, str]:
|
190 |
+
"""
|
191 |
+
Extract a GLB file from the 3D model.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
state (dict): The state of the generated 3D model.
|
195 |
+
mesh_simplify (float): The mesh simplification factor.
|
196 |
+
texture_size (int): The texture resolution.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
str: The path to the extracted GLB file.
|
200 |
+
"""
|
201 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
202 |
+
gs, mesh = unpack_state(state)
|
203 |
+
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
204 |
+
glb_path = os.path.join(user_dir, 'sample.glb')
|
205 |
+
glb.export(glb_path)
|
206 |
+
torch.cuda.empty_cache()
|
207 |
+
return glb_path, glb_path
|
208 |
+
|
209 |
+
|
210 |
+
@spaces.GPU
|
211 |
+
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
212 |
+
"""
|
213 |
+
Extract a Gaussian file from the 3D model.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
state (dict): The state of the generated 3D model.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
str: The path to the extracted Gaussian file.
|
220 |
+
"""
|
221 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
222 |
+
gs, _ = unpack_state(state)
|
223 |
+
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
224 |
+
gs.save_ply(gaussian_path)
|
225 |
+
torch.cuda.empty_cache()
|
226 |
+
return gaussian_path, gaussian_path
|
227 |
+
|
228 |
+
|
229 |
+
def prepare_multi_example() -> List[Image.Image]:
|
230 |
+
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
231 |
+
images = []
|
232 |
+
for case in multi_case:
|
233 |
+
_images = []
|
234 |
+
for i in range(1, 4):
|
235 |
+
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
|
236 |
+
W, H = img.size
|
237 |
+
img = img.resize((int(W / H * 512), 512))
|
238 |
+
_images.append(np.array(img))
|
239 |
+
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
240 |
+
return images
|
241 |
+
|
242 |
+
|
243 |
+
def split_image(image: Image.Image) -> List[Image.Image]:
|
244 |
+
"""
|
245 |
+
Split an image into multiple views.
|
246 |
+
"""
|
247 |
+
image = np.array(image)
|
248 |
+
alpha = image[..., 3]
|
249 |
+
alpha = np.any(alpha>0, axis=0)
|
250 |
+
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
251 |
+
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
252 |
+
images = []
|
253 |
+
for s, e in zip(start_pos, end_pos):
|
254 |
+
images.append(Image.fromarray(image[:, s:e+1]))
|
255 |
+
return [preprocess_image(image) for image in images]
|
256 |
+
|
257 |
+
|
258 |
+
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
259 |
+
gr.Markdown("""
|
260 |
+
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
|
261 |
+
* Upload an image and click "Generate" to create a 3D asset.
|
262 |
+
* Target object selection. Multiple point prompts are supported until you get the ideal visible area.
|
263 |
+
* Occluders selection, this can be done by squential point prompts. If you want to skip this step, you can choose "all occ" then all the other areas except the target object will be treated as occluders.
|
264 |
+
* Different randomseeds can be tried. If you think the results are not ideal.
|
265 |
+
* If the reconstruction 3D asset satisfactory, you can extract the GLB file and download it.
|
266 |
+
""")
|
267 |
+
|
268 |
+
with gr.Row():
|
269 |
+
with gr.Column():
|
270 |
+
with gr.Tabs() as input_tabs:
|
271 |
+
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
272 |
+
|
273 |
+
# Segment Anything
|
274 |
+
|
275 |
+
with gr.Accordion(label="Generation Settings", open=False):
|
276 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
|
277 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
278 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
279 |
+
with gr.Row():
|
280 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
281 |
+
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
282 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
283 |
+
with gr.Row():
|
284 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
285 |
+
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
286 |
+
# multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
287 |
+
|
288 |
+
# generate_btn = gr.Button("Generate")
|
289 |
+
|
290 |
+
# with gr.Accordion(label="GLB Extraction Settings", open=False):
|
291 |
+
# mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
292 |
+
# texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
293 |
+
|
294 |
+
# with gr.Row():
|
295 |
+
# extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
296 |
+
# extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
297 |
+
# gr.Markdown("""
|
298 |
+
# *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
299 |
+
# """)
|
300 |
+
|
301 |
+
# with gr.Column():
|
302 |
+
# video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
303 |
+
# model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
304 |
+
|
305 |
+
# with gr.Row():
|
306 |
+
# download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
307 |
+
# download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
308 |
+
|
309 |
+
# is_multiimage = gr.State(False)
|
310 |
+
# output_buf = gr.State()
|
311 |
+
|
312 |
+
# # Example images at the bottom of the page
|
313 |
+
# with gr.Row() as single_image_example:
|
314 |
+
# examples = gr.Examples(
|
315 |
+
# examples=[
|
316 |
+
# f'assets/example_image/{image}'
|
317 |
+
# for image in os.listdir("assets/example_image")
|
318 |
+
# ],
|
319 |
+
# inputs=[image_prompt],
|
320 |
+
# fn=preprocess_image,
|
321 |
+
# outputs=[image_prompt],
|
322 |
+
# run_on_click=True,
|
323 |
+
# examples_per_page=64,
|
324 |
+
# )
|
325 |
+
# with gr.Row(visible=False) as multiimage_example:
|
326 |
+
# examples_multi = gr.Examples(
|
327 |
+
# examples=prepare_multi_example(),
|
328 |
+
# inputs=[image_prompt],
|
329 |
+
# fn=split_image,
|
330 |
+
# outputs=[multiimage_prompt],
|
331 |
+
# run_on_click=True,
|
332 |
+
# examples_per_page=8,
|
333 |
+
# )
|
334 |
+
|
335 |
+
# Handlers
|
336 |
+
demo.load(start_session)
|
337 |
+
demo.unload(end_session)
|
338 |
+
|
339 |
+
# single_image_input_tab.select(
|
340 |
+
# lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
341 |
+
# outputs=[single_image_example]
|
342 |
+
# )
|
343 |
+
# multiimage_input_tab.select(
|
344 |
+
# lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
345 |
+
# outputs=[is_multiimage, single_image_example, multiimage_example]
|
346 |
+
# )
|
347 |
+
|
348 |
+
image_prompt.upload(
|
349 |
+
preprocess_image,
|
350 |
+
inputs=[image_prompt],
|
351 |
+
outputs=[image_prompt],
|
352 |
+
)
|
353 |
+
|
354 |
+
# generate_btn.click(
|
355 |
+
# get_seed,
|
356 |
+
# inputs=[randomize_seed, seed],
|
357 |
+
# outputs=[seed],
|
358 |
+
# ).then(
|
359 |
+
# image_to_3d,
|
360 |
+
# inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
361 |
+
# outputs=[output_buf, video_output],
|
362 |
+
# ).then(
|
363 |
+
# lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
364 |
+
# outputs=[extract_glb_btn, extract_gs_btn],
|
365 |
+
# )
|
366 |
+
|
367 |
+
# video_output.clear(
|
368 |
+
# lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
369 |
+
# outputs=[extract_glb_btn, extract_gs_btn],
|
370 |
+
# )
|
371 |
+
|
372 |
+
# extract_glb_btn.click(
|
373 |
+
# extract_glb,
|
374 |
+
# inputs=[output_buf, mesh_simplify, texture_size],
|
375 |
+
# outputs=[model_output, download_glb],
|
376 |
+
# ).then(
|
377 |
+
# lambda: gr.Button(interactive=True),
|
378 |
+
# outputs=[download_glb],
|
379 |
+
# )
|
380 |
+
|
381 |
+
# extract_gs_btn.click(
|
382 |
+
# extract_gaussian,
|
383 |
+
# inputs=[output_buf],
|
384 |
+
# outputs=[model_output, download_gs],
|
385 |
+
# ).then(
|
386 |
+
# lambda: gr.Button(interactive=True),
|
387 |
+
# outputs=[download_gs],
|
388 |
+
# )
|
389 |
+
|
390 |
+
# model_output.clear(
|
391 |
+
# lambda: gr.Button(interactive=False),
|
392 |
+
# outputs=[download_glb],
|
393 |
+
# )
|
394 |
+
|
395 |
+
|
396 |
+
# Launch the Gradio app
|
397 |
+
if __name__ == "__main__":
|
398 |
+
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
|
399 |
+
pipeline.cuda()
|
400 |
+
try:
|
401 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
402 |
+
except:
|
403 |
+
pass
|
404 |
+
demo.launch()
|