Sm0kyWu commited on
Commit
afe5cdc
Β·
verified Β·
1 Parent(s): a03e4b0

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +404 -3
app.py CHANGED
@@ -1,3 +1,404 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb9da100a119ace486710991945468dbf8475f1aef883e8323b864203a1eda85
3
- size 15283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from gradio_litmodel3d import LitModel3D
4
+
5
+ import os
6
+ import shutil
7
+ os.environ['SPCONV_ALGO'] = 'native'
8
+ from typing import *
9
+ import torch
10
+ import numpy as np
11
+ import imageio
12
+ from easydict import EasyDict as edict
13
+ from PIL import Image
14
+ from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
15
+ from Amodal3R.representations import Gaussian, MeshExtractResult
16
+ from Amodal3R.utils import render_utils, postprocessing_utils
17
+
18
+
19
+ MAX_SEED = np.iinfo(np.int32).max
20
+ TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
21
+ os.makedirs(TMP_DIR, exist_ok=True)
22
+
23
+
24
+ def start_session(req: gr.Request):
25
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
26
+ os.makedirs(user_dir, exist_ok=True)
27
+
28
+
29
+ def end_session(req: gr.Request):
30
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
31
+ shutil.rmtree(user_dir)
32
+
33
+
34
+ def preprocess_image(image: Image.Image) -> Image.Image:
35
+ """
36
+ Preprocess the input image.
37
+
38
+ Args:
39
+ image (Image.Image): The input image.
40
+
41
+ Returns:
42
+ Image.Image: The preprocessed image.
43
+ """
44
+ processed_image = pipeline.preprocess_image(image)
45
+ return processed_image
46
+
47
+
48
+ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
49
+ """
50
+ Preprocess a list of input images.
51
+
52
+ Args:
53
+ images (List[Tuple[Image.Image, str]]): The input images.
54
+
55
+ Returns:
56
+ List[Image.Image]: The preprocessed images.
57
+ """
58
+ images = [image[0] for image in images]
59
+ processed_images = [pipeline.preprocess_image(image) for image in images]
60
+ return processed_images
61
+
62
+
63
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
64
+ return {
65
+ 'gaussian': {
66
+ **gs.init_params,
67
+ '_xyz': gs._xyz.cpu().numpy(),
68
+ '_features_dc': gs._features_dc.cpu().numpy(),
69
+ '_scaling': gs._scaling.cpu().numpy(),
70
+ '_rotation': gs._rotation.cpu().numpy(),
71
+ '_opacity': gs._opacity.cpu().numpy(),
72
+ },
73
+ 'mesh': {
74
+ 'vertices': mesh.vertices.cpu().numpy(),
75
+ 'faces': mesh.faces.cpu().numpy(),
76
+ },
77
+ }
78
+
79
+
80
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
81
+ gs = Gaussian(
82
+ aabb=state['gaussian']['aabb'],
83
+ sh_degree=state['gaussian']['sh_degree'],
84
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
85
+ scaling_bias=state['gaussian']['scaling_bias'],
86
+ opacity_bias=state['gaussian']['opacity_bias'],
87
+ scaling_activation=state['gaussian']['scaling_activation'],
88
+ )
89
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
90
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
91
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
92
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
93
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
94
+
95
+ mesh = edict(
96
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
97
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
98
+ )
99
+
100
+ return gs, mesh
101
+
102
+
103
+ def get_seed(randomize_seed: bool, seed: int) -> int:
104
+ """
105
+ Get the random seed.
106
+ """
107
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
108
+
109
+
110
+ @spaces.GPU
111
+ def image_to_3d(
112
+ image: Image.Image,
113
+ multiimages: List[Tuple[Image.Image, str]],
114
+ is_multiimage: bool,
115
+ seed: int,
116
+ ss_guidance_strength: float,
117
+ ss_sampling_steps: int,
118
+ slat_guidance_strength: float,
119
+ slat_sampling_steps: int,
120
+ multiimage_algo: Literal["multidiffusion", "stochastic"],
121
+ req: gr.Request,
122
+ ) -> Tuple[dict, str]:
123
+ """
124
+ Convert an image to a 3D model.
125
+
126
+ Args:
127
+ image (Image.Image): The input image.
128
+ multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
129
+ is_multiimage (bool): Whether is in multi-image mode.
130
+ seed (int): The random seed.
131
+ ss_guidance_strength (float): The guidance strength for sparse structure generation.
132
+ ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
133
+ slat_guidance_strength (float): The guidance strength for structured latent generation.
134
+ slat_sampling_steps (int): The number of sampling steps for structured latent generation.
135
+ multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
136
+
137
+ Returns:
138
+ dict: The information of the generated 3D model.
139
+ str: The path to the video of the 3D model.
140
+ """
141
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
142
+ if not is_multiimage:
143
+ outputs = pipeline.run(
144
+ image,
145
+ seed=seed,
146
+ formats=["gaussian", "mesh"],
147
+ preprocess_image=False,
148
+ sparse_structure_sampler_params={
149
+ "steps": ss_sampling_steps,
150
+ "cfg_strength": ss_guidance_strength,
151
+ },
152
+ slat_sampler_params={
153
+ "steps": slat_sampling_steps,
154
+ "cfg_strength": slat_guidance_strength,
155
+ },
156
+ )
157
+ else:
158
+ outputs = pipeline.run_multi_image(
159
+ [image[0] for image in multiimages],
160
+ seed=seed,
161
+ formats=["gaussian", "mesh"],
162
+ preprocess_image=False,
163
+ sparse_structure_sampler_params={
164
+ "steps": ss_sampling_steps,
165
+ "cfg_strength": ss_guidance_strength,
166
+ },
167
+ slat_sampler_params={
168
+ "steps": slat_sampling_steps,
169
+ "cfg_strength": slat_guidance_strength,
170
+ },
171
+ mode=multiimage_algo,
172
+ )
173
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
174
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
175
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
176
+ video_path = os.path.join(user_dir, 'sample.mp4')
177
+ imageio.mimsave(video_path, video, fps=15)
178
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
179
+ torch.cuda.empty_cache()
180
+ return state, video_path
181
+
182
+
183
+ @spaces.GPU(duration=90)
184
+ def extract_glb(
185
+ state: dict,
186
+ mesh_simplify: float,
187
+ texture_size: int,
188
+ req: gr.Request,
189
+ ) -> Tuple[str, str]:
190
+ """
191
+ Extract a GLB file from the 3D model.
192
+
193
+ Args:
194
+ state (dict): The state of the generated 3D model.
195
+ mesh_simplify (float): The mesh simplification factor.
196
+ texture_size (int): The texture resolution.
197
+
198
+ Returns:
199
+ str: The path to the extracted GLB file.
200
+ """
201
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
202
+ gs, mesh = unpack_state(state)
203
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
204
+ glb_path = os.path.join(user_dir, 'sample.glb')
205
+ glb.export(glb_path)
206
+ torch.cuda.empty_cache()
207
+ return glb_path, glb_path
208
+
209
+
210
+ @spaces.GPU
211
+ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
212
+ """
213
+ Extract a Gaussian file from the 3D model.
214
+
215
+ Args:
216
+ state (dict): The state of the generated 3D model.
217
+
218
+ Returns:
219
+ str: The path to the extracted Gaussian file.
220
+ """
221
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
222
+ gs, _ = unpack_state(state)
223
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
224
+ gs.save_ply(gaussian_path)
225
+ torch.cuda.empty_cache()
226
+ return gaussian_path, gaussian_path
227
+
228
+
229
+ def prepare_multi_example() -> List[Image.Image]:
230
+ multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
231
+ images = []
232
+ for case in multi_case:
233
+ _images = []
234
+ for i in range(1, 4):
235
+ img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
236
+ W, H = img.size
237
+ img = img.resize((int(W / H * 512), 512))
238
+ _images.append(np.array(img))
239
+ images.append(Image.fromarray(np.concatenate(_images, axis=1)))
240
+ return images
241
+
242
+
243
+ def split_image(image: Image.Image) -> List[Image.Image]:
244
+ """
245
+ Split an image into multiple views.
246
+ """
247
+ image = np.array(image)
248
+ alpha = image[..., 3]
249
+ alpha = np.any(alpha>0, axis=0)
250
+ start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
251
+ end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
252
+ images = []
253
+ for s, e in zip(start_pos, end_pos):
254
+ images.append(Image.fromarray(image[:, s:e+1]))
255
+ return [preprocess_image(image) for image in images]
256
+
257
+
258
+ with gr.Blocks(delete_cache=(600, 600)) as demo:
259
+ gr.Markdown("""
260
+ ## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
261
+ * Upload an image and click "Generate" to create a 3D asset.
262
+ * Target object selection. Multiple point prompts are supported until you get the ideal visible area.
263
+ * Occluders selection, this can be done by squential point prompts. If you want to skip this step, you can choose "all occ" then all the other areas except the target object will be treated as occluders.
264
+ * Different randomseeds can be tried. If you think the results are not ideal.
265
+ * If the reconstruction 3D asset satisfactory, you can extract the GLB file and download it.
266
+ """)
267
+
268
+ with gr.Row():
269
+ with gr.Column():
270
+ with gr.Tabs() as input_tabs:
271
+ image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
272
+
273
+ # Segment Anything
274
+
275
+ with gr.Accordion(label="Generation Settings", open=False):
276
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
277
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
278
+ gr.Markdown("Stage 1: Sparse Structure Generation")
279
+ with gr.Row():
280
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
281
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
282
+ gr.Markdown("Stage 2: Structured Latent Generation")
283
+ with gr.Row():
284
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
285
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
286
+ # multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
287
+
288
+ # generate_btn = gr.Button("Generate")
289
+
290
+ # with gr.Accordion(label="GLB Extraction Settings", open=False):
291
+ # mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
292
+ # texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
293
+
294
+ # with gr.Row():
295
+ # extract_glb_btn = gr.Button("Extract GLB", interactive=False)
296
+ # extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
297
+ # gr.Markdown("""
298
+ # *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
299
+ # """)
300
+
301
+ # with gr.Column():
302
+ # video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
303
+ # model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
304
+
305
+ # with gr.Row():
306
+ # download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
307
+ # download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
308
+
309
+ # is_multiimage = gr.State(False)
310
+ # output_buf = gr.State()
311
+
312
+ # # Example images at the bottom of the page
313
+ # with gr.Row() as single_image_example:
314
+ # examples = gr.Examples(
315
+ # examples=[
316
+ # f'assets/example_image/{image}'
317
+ # for image in os.listdir("assets/example_image")
318
+ # ],
319
+ # inputs=[image_prompt],
320
+ # fn=preprocess_image,
321
+ # outputs=[image_prompt],
322
+ # run_on_click=True,
323
+ # examples_per_page=64,
324
+ # )
325
+ # with gr.Row(visible=False) as multiimage_example:
326
+ # examples_multi = gr.Examples(
327
+ # examples=prepare_multi_example(),
328
+ # inputs=[image_prompt],
329
+ # fn=split_image,
330
+ # outputs=[multiimage_prompt],
331
+ # run_on_click=True,
332
+ # examples_per_page=8,
333
+ # )
334
+
335
+ # Handlers
336
+ demo.load(start_session)
337
+ demo.unload(end_session)
338
+
339
+ # single_image_input_tab.select(
340
+ # lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
341
+ # outputs=[single_image_example]
342
+ # )
343
+ # multiimage_input_tab.select(
344
+ # lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
345
+ # outputs=[is_multiimage, single_image_example, multiimage_example]
346
+ # )
347
+
348
+ image_prompt.upload(
349
+ preprocess_image,
350
+ inputs=[image_prompt],
351
+ outputs=[image_prompt],
352
+ )
353
+
354
+ # generate_btn.click(
355
+ # get_seed,
356
+ # inputs=[randomize_seed, seed],
357
+ # outputs=[seed],
358
+ # ).then(
359
+ # image_to_3d,
360
+ # inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
361
+ # outputs=[output_buf, video_output],
362
+ # ).then(
363
+ # lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
364
+ # outputs=[extract_glb_btn, extract_gs_btn],
365
+ # )
366
+
367
+ # video_output.clear(
368
+ # lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
369
+ # outputs=[extract_glb_btn, extract_gs_btn],
370
+ # )
371
+
372
+ # extract_glb_btn.click(
373
+ # extract_glb,
374
+ # inputs=[output_buf, mesh_simplify, texture_size],
375
+ # outputs=[model_output, download_glb],
376
+ # ).then(
377
+ # lambda: gr.Button(interactive=True),
378
+ # outputs=[download_glb],
379
+ # )
380
+
381
+ # extract_gs_btn.click(
382
+ # extract_gaussian,
383
+ # inputs=[output_buf],
384
+ # outputs=[model_output, download_gs],
385
+ # ).then(
386
+ # lambda: gr.Button(interactive=True),
387
+ # outputs=[download_gs],
388
+ # )
389
+
390
+ # model_output.clear(
391
+ # lambda: gr.Button(interactive=False),
392
+ # outputs=[download_glb],
393
+ # )
394
+
395
+
396
+ # Launch the Gradio app
397
+ if __name__ == "__main__":
398
+ pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
399
+ pipeline.cuda()
400
+ try:
401
+ pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
402
+ except:
403
+ pass
404
+ demo.launch()