Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -33,102 +33,42 @@ def end_session(req: gr.Request):
|
|
33 |
shutil.rmtree(user_dir)
|
34 |
|
35 |
|
36 |
-
def
|
37 |
"""
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
return processed_image
|
48 |
-
|
49 |
-
|
50 |
-
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
51 |
-
"""
|
52 |
-
Preprocess a list of input images.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
images (List[Tuple[Image.Image, str]]): The input images.
|
56 |
-
|
57 |
-
Returns:
|
58 |
-
List[Image.Image]: The preprocessed images.
|
59 |
-
"""
|
60 |
-
images = [image[0] for image in images]
|
61 |
-
processed_images = [pipeline.preprocess_image(image) for image in images]
|
62 |
-
return processed_images
|
63 |
-
|
64 |
-
|
65 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
66 |
-
return {
|
67 |
-
'gaussian': {
|
68 |
-
**gs.init_params,
|
69 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
70 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
71 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
72 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
73 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
74 |
-
},
|
75 |
-
'mesh': {
|
76 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
77 |
-
'faces': mesh.faces.cpu().numpy(),
|
78 |
-
},
|
79 |
-
}
|
80 |
-
|
81 |
-
|
82 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
83 |
-
gs = Gaussian(
|
84 |
-
aabb=state['gaussian']['aabb'],
|
85 |
-
sh_degree=state['gaussian']['sh_degree'],
|
86 |
-
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
87 |
-
scaling_bias=state['gaussian']['scaling_bias'],
|
88 |
-
opacity_bias=state['gaussian']['opacity_bias'],
|
89 |
-
scaling_activation=state['gaussian']['scaling_activation'],
|
90 |
-
)
|
91 |
-
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
92 |
-
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
93 |
-
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
94 |
-
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
95 |
-
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
96 |
-
|
97 |
-
mesh = edict(
|
98 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
99 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
100 |
-
)
|
101 |
-
|
102 |
-
return gs, mesh
|
103 |
-
|
104 |
-
|
105 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
106 |
-
"""
|
107 |
-
Get the random seed.
|
108 |
-
"""
|
109 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
110 |
-
|
111 |
-
|
112 |
-
def record_click(evt, points):
|
113 |
-
"""
|
114 |
-
记录在图像上点击的位置,默认所有点击均为目标对象的 prompt,标签设为 1
|
115 |
"""
|
116 |
if points is None:
|
117 |
points = []
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
@spaces.GPU
|
127 |
def run_sam(predictor: SamPredictor, image, selected_points):
|
128 |
"""
|
129 |
-
调用
|
130 |
"""
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
if len(selected_points) == 0:
|
133 |
return [], None
|
134 |
input_points = [p for p, _ in selected_points]
|
@@ -144,33 +84,24 @@ def run_sam(predictor: SamPredictor, image, selected_points):
|
|
144 |
|
145 |
def apply_mask_overlay(image: Image.Image, mask: np.ndarray) -> Image.Image:
|
146 |
"""
|
147 |
-
|
148 |
-
非 mask 区域叠加浅灰色半透明遮罩
|
149 |
"""
|
150 |
-
# 转换图像为 numpy 数组
|
151 |
img_arr = np.array(image)
|
152 |
-
# 如果 mask 为三维,则取第一个通道
|
153 |
if mask.ndim == 3:
|
154 |
mask = mask[:, :, 0]
|
155 |
-
# 创建副本用于叠加
|
156 |
overlay = img_arr.copy()
|
157 |
-
# 定义浅灰色(例如 RGB=(200,200,200))
|
158 |
gray_color = np.array([200, 200, 200], dtype=np.uint8)
|
159 |
-
# 对于非 mask 区域(mask == 0),进行半透明混合
|
160 |
non_mask = mask == 0
|
161 |
overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8)
|
162 |
-
# 使用 OpenCV 找到 mask 的轮廓
|
163 |
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
164 |
-
# 在 overlay 上绘制红色轮廓,粗细为2个像素
|
165 |
cv2.drawContours(overlay, contours, -1, (255, 0, 0), 2)
|
166 |
return Image.fromarray(overlay)
|
167 |
|
168 |
|
169 |
def segment_and_overlay(image: Image.Image, points):
|
170 |
"""
|
171 |
-
调用 run_sam 获得 mask
|
172 |
"""
|
173 |
-
# 确保输入图像为 RGB
|
174 |
if image.mode != "RGB":
|
175 |
image = image.convert("RGB")
|
176 |
mask, _ = run_sam(sam_predictor, image, points)
|
@@ -179,9 +110,10 @@ def segment_and_overlay(image: Image.Image, points):
|
|
179 |
overlaid = apply_mask_overlay(image, mask)
|
180 |
return overlaid
|
181 |
|
|
|
182 |
def reset_points():
|
183 |
"""
|
184 |
-
|
185 |
"""
|
186 |
return [], ""
|
187 |
|
@@ -189,33 +121,18 @@ def reset_points():
|
|
189 |
@spaces.GPU
|
190 |
def image_to_3d(
|
191 |
image: Image.Image,
|
192 |
-
multiimages: List[
|
193 |
is_multiimage: bool,
|
194 |
seed: int,
|
195 |
ss_guidance_strength: float,
|
196 |
ss_sampling_steps: int,
|
197 |
slat_guidance_strength: float,
|
198 |
slat_sampling_steps: int,
|
199 |
-
multiimage_algo:
|
200 |
req: gr.Request,
|
201 |
-
) ->
|
202 |
"""
|
203 |
-
|
204 |
-
|
205 |
-
Args:
|
206 |
-
image (Image.Image): The input image.
|
207 |
-
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
208 |
-
is_multiimage (bool): Whether is in multi-image mode.
|
209 |
-
seed (int): The random seed.
|
210 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
211 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
212 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
213 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
214 |
-
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
215 |
-
|
216 |
-
Returns:
|
217 |
-
dict: The information of the generated 3D model.
|
218 |
-
str: The path to the video of the 3D model.
|
219 |
"""
|
220 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
221 |
if not is_multiimage:
|
@@ -235,7 +152,7 @@ def image_to_3d(
|
|
235 |
)
|
236 |
else:
|
237 |
outputs = pipeline.run_multi_image(
|
238 |
-
[
|
239 |
seed=seed,
|
240 |
formats=["gaussian", "mesh"],
|
241 |
preprocess_image=False,
|
@@ -265,17 +182,9 @@ def extract_glb(
|
|
265 |
mesh_simplify: float,
|
266 |
texture_size: int,
|
267 |
req: gr.Request,
|
268 |
-
) ->
|
269 |
"""
|
270 |
-
|
271 |
-
|
272 |
-
Args:
|
273 |
-
state (dict): The state of the generated 3D model.
|
274 |
-
mesh_simplify (float): The mesh simplification factor.
|
275 |
-
texture_size (int): The texture resolution.
|
276 |
-
|
277 |
-
Returns:
|
278 |
-
str: The path to the extracted GLB file.
|
279 |
"""
|
280 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
281 |
gs, mesh = unpack_state(state)
|
@@ -287,15 +196,9 @@ def extract_glb(
|
|
287 |
|
288 |
|
289 |
@spaces.GPU
|
290 |
-
def extract_gaussian(state: dict, req: gr.Request) ->
|
291 |
"""
|
292 |
-
|
293 |
-
|
294 |
-
Args:
|
295 |
-
state (dict): The state of the generated 3D model.
|
296 |
-
|
297 |
-
Returns:
|
298 |
-
str: The path to the extracted Gaussian file.
|
299 |
"""
|
300 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
301 |
gs, _ = unpack_state(state)
|
@@ -305,7 +208,47 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
305 |
return gaussian_path, gaussian_path
|
306 |
|
307 |
|
308 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
310 |
images = []
|
311 |
for case in multi_case:
|
@@ -319,49 +262,37 @@ def prepare_multi_example() -> List[Image.Image]:
|
|
319 |
return images
|
320 |
|
321 |
|
322 |
-
def split_image(image: Image.Image) ->
|
323 |
"""
|
324 |
-
|
325 |
"""
|
326 |
image = np.array(image)
|
327 |
alpha = image[..., 3]
|
328 |
-
alpha = np.any(alpha>0, axis=0)
|
329 |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
330 |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
331 |
images = []
|
332 |
for s, e in zip(start_pos, end_pos):
|
333 |
images.append(Image.fromarray(image[:, s:e+1]))
|
334 |
-
return [
|
335 |
|
336 |
|
337 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
338 |
gr.Markdown("""
|
339 |
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
|
340 |
-
*
|
341 |
-
* Target object selection. Multiple point prompts are supported until you get the ideal visible area.
|
342 |
-
* Occluders selection, this can be done by squential point prompts. You can choose "all occ", then all the other areas except the target object will be treated as occluders.
|
343 |
-
* Different random seeds can be tried in "Generation Settings", if you think the results are not ideal.
|
344 |
-
* If the reconstruction 3D asset is satisfactory, you can extract the GLB file and download it.
|
345 |
""")
|
346 |
with gr.Row():
|
347 |
with gr.Column():
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
# 用于交互标注的图像
|
352 |
image_annotation = gr.Image(type="numpy", label="Select Point Prompts for Target Object", interactive=True, height=512)
|
353 |
-
#
|
354 |
points_state = gr.State([])
|
355 |
points_output = gr.Textbox(label="Target Object Prompts", interactive=False)
|
356 |
-
#
|
357 |
-
|
358 |
-
record_click,
|
359 |
-
inputs=[points_state],
|
360 |
-
outputs=[points_state, points_output]
|
361 |
-
)
|
362 |
-
# 新增:分割后展示结果的组件
|
363 |
-
segmented_output = gr.Image(label="Segmented Result", height=512)
|
364 |
-
|
365 |
|
366 |
with gr.Accordion(label="Generation Settings", open=False):
|
367 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
|
@@ -374,119 +305,38 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
374 |
with gr.Row():
|
375 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
376 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
377 |
-
|
378 |
-
# with gr.Column():
|
379 |
-
|
380 |
-
|
381 |
-
# generate_btn = gr.Button("Generate")
|
382 |
-
|
383 |
-
# with gr.Accordion(label="GLB Extraction Settings", open=False):
|
384 |
-
# mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
385 |
-
# texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
386 |
-
|
387 |
-
# with gr.Row():
|
388 |
-
# extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
389 |
-
# extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
390 |
-
# gr.Markdown("""
|
391 |
-
# *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
392 |
-
# """)
|
393 |
-
|
394 |
-
# with gr.Column():
|
395 |
-
# video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
396 |
-
# model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
397 |
-
|
398 |
-
# with gr.Row():
|
399 |
-
# download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
400 |
-
# download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
401 |
|
402 |
-
#
|
403 |
-
# output_buf = gr.State()
|
404 |
-
|
405 |
-
# # Example images at the bottom of the page
|
406 |
-
# with gr.Row() as single_image_example:
|
407 |
-
# examples = gr.Examples(
|
408 |
-
# examples=[
|
409 |
-
# f'assets/example_image/{image}'
|
410 |
-
# for image in os.listdir("assets/example_image")
|
411 |
-
# ],
|
412 |
-
# inputs=[image_prompt],
|
413 |
-
# fn=preprocess_image,
|
414 |
-
# outputs=[image_prompt],
|
415 |
-
# run_on_click=True,
|
416 |
-
# examples_per_page=64,
|
417 |
-
# )
|
418 |
-
# with gr.Row(visible=False) as multiimage_example:
|
419 |
-
# examples_multi = gr.Examples(
|
420 |
-
# examples=prepare_multi_example(),
|
421 |
-
# inputs=[image_prompt],
|
422 |
-
# fn=split_image,
|
423 |
-
# outputs=[multiimage_prompt],
|
424 |
-
# run_on_click=True,
|
425 |
-
# examples_per_page=8,
|
426 |
-
# )
|
427 |
-
|
428 |
-
# Handlers
|
429 |
demo.load(start_session)
|
430 |
demo.unload(end_session)
|
431 |
|
432 |
-
#
|
433 |
-
# lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
434 |
-
# outputs=[single_image_example]
|
435 |
-
# )
|
436 |
-
# multiimage_input_tab.select(
|
437 |
-
# lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
438 |
-
# outputs=[is_multiimage, single_image_example, multiimage_example]
|
439 |
-
# )
|
440 |
-
|
441 |
image_prompt.upload(
|
442 |
-
|
443 |
inputs=[image_prompt],
|
444 |
-
outputs=[image_prompt]
|
445 |
)
|
446 |
-
|
447 |
-
# generate_btn.click(
|
448 |
-
# get_seed,
|
449 |
-
# inputs=[randomize_seed, seed],
|
450 |
-
# outputs=[seed],
|
451 |
-
# ).then(
|
452 |
-
# image_to_3d,
|
453 |
-
# inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
454 |
-
# outputs=[output_buf, video_output],
|
455 |
-
# ).then(
|
456 |
-
# lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
457 |
-
# outputs=[extract_glb_btn, extract_gs_btn],
|
458 |
-
# )
|
459 |
-
|
460 |
-
# video_output.clear(
|
461 |
-
# lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
462 |
-
# outputs=[extract_glb_btn, extract_gs_btn],
|
463 |
-
# )
|
464 |
-
|
465 |
-
# extract_glb_btn.click(
|
466 |
-
# extract_glb,
|
467 |
-
# inputs=[output_buf, mesh_simplify, texture_size],
|
468 |
-
# outputs=[model_output, download_glb],
|
469 |
-
# ).then(
|
470 |
-
# lambda: gr.Button(interactive=True),
|
471 |
-
# outputs=[download_glb],
|
472 |
-
# )
|
473 |
|
474 |
-
#
|
475 |
-
#
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
|
|
|
|
487 |
|
|
|
488 |
|
489 |
-
#
|
490 |
if __name__ == "__main__":
|
491 |
sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth")
|
492 |
model_type = "vit_h"
|
@@ -497,7 +347,7 @@ if __name__ == "__main__":
|
|
497 |
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
|
498 |
pipeline.cuda()
|
499 |
try:
|
500 |
-
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
501 |
except:
|
502 |
pass
|
503 |
demo.launch()
|
|
|
33 |
shutil.rmtree(user_dir)
|
34 |
|
35 |
|
36 |
+
def select_point_callback(image, points, evt):
|
37 |
"""
|
38 |
+
当用户点击图像时,记录点击点并在图像上绘制标记(十字)。
|
39 |
+
输入参数:
|
40 |
+
- image:当前图像(numpy 数组)。
|
41 |
+
- points:已记录的点列表。
|
42 |
+
- evt:Gradio 的点击事件数据(包含 .index,即点击坐标)。
|
43 |
+
返回:
|
44 |
+
- 更新后的图像(带标记)。
|
45 |
+
- 更新后的点列表。
|
46 |
+
- 以字符串形式展示的点列表(用于显示在文本框中)。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
"""
|
48 |
if points is None:
|
49 |
points = []
|
50 |
+
annotated_img = image.copy()
|
51 |
+
# 如果没有点击事件,则直接返回原图和当前点列表
|
52 |
+
if evt is None or evt.index is None:
|
53 |
+
return image, points, str(points)
|
54 |
+
coord = evt.index # 期望返回 (x, y)
|
55 |
+
points.append((tuple(coord), 1)) # 记录为正样本 prompt
|
56 |
+
# 绘制十字标记,颜色为红色
|
57 |
+
cv2.drawMarker(annotated_img, tuple(coord), (255, 0, 0),
|
58 |
+
markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
|
59 |
+
return annotated_img, points, str(points)
|
60 |
+
|
61 |
|
62 |
@spaces.GPU
|
63 |
def run_sam(predictor: SamPredictor, image, selected_points):
|
64 |
"""
|
65 |
+
调用 SAM 模型进行分割。
|
66 |
"""
|
67 |
+
# 确保图像为 RGB 模式
|
68 |
+
if isinstance(image, np.ndarray):
|
69 |
+
image = Image.fromarray(image)
|
70 |
+
if image.mode != 'RGB':
|
71 |
+
image = image.convert("RGB")
|
72 |
if len(selected_points) == 0:
|
73 |
return [], None
|
74 |
input_points = [p for p, _ in selected_points]
|
|
|
84 |
|
85 |
def apply_mask_overlay(image: Image.Image, mask: np.ndarray) -> Image.Image:
|
86 |
"""
|
87 |
+
���原图上叠加 mask:使用红色绘制 mask 的轮廓,非 mask 区域叠加浅灰色半透明遮罩。
|
|
|
88 |
"""
|
|
|
89 |
img_arr = np.array(image)
|
|
|
90 |
if mask.ndim == 3:
|
91 |
mask = mask[:, :, 0]
|
|
|
92 |
overlay = img_arr.copy()
|
|
|
93 |
gray_color = np.array([200, 200, 200], dtype=np.uint8)
|
|
|
94 |
non_mask = mask == 0
|
95 |
overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8)
|
|
|
96 |
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
97 |
cv2.drawContours(overlay, contours, -1, (255, 0, 0), 2)
|
98 |
return Image.fromarray(overlay)
|
99 |
|
100 |
|
101 |
def segment_and_overlay(image: Image.Image, points):
|
102 |
"""
|
103 |
+
调用 run_sam 获得 mask,然后叠加显示分割结果。
|
104 |
"""
|
|
|
105 |
if image.mode != "RGB":
|
106 |
image = image.convert("RGB")
|
107 |
mask, _ = run_sam(sam_predictor, image, points)
|
|
|
110 |
overlaid = apply_mask_overlay(image, mask)
|
111 |
return overlaid
|
112 |
|
113 |
+
|
114 |
def reset_points():
|
115 |
"""
|
116 |
+
清空点击点提示。
|
117 |
"""
|
118 |
return [], ""
|
119 |
|
|
|
121 |
@spaces.GPU
|
122 |
def image_to_3d(
|
123 |
image: Image.Image,
|
124 |
+
multiimages: List[tuple],
|
125 |
is_multiimage: bool,
|
126 |
seed: int,
|
127 |
ss_guidance_strength: float,
|
128 |
ss_sampling_steps: int,
|
129 |
slat_guidance_strength: float,
|
130 |
slat_sampling_steps: int,
|
131 |
+
multiimage_algo: str,
|
132 |
req: gr.Request,
|
133 |
+
) -> tuple:
|
134 |
"""
|
135 |
+
将图像转换为 3D 模型。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
"""
|
137 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
138 |
if not is_multiimage:
|
|
|
152 |
)
|
153 |
else:
|
154 |
outputs = pipeline.run_multi_image(
|
155 |
+
[img[0] for img in multiimages],
|
156 |
seed=seed,
|
157 |
formats=["gaussian", "mesh"],
|
158 |
preprocess_image=False,
|
|
|
182 |
mesh_simplify: float,
|
183 |
texture_size: int,
|
184 |
req: gr.Request,
|
185 |
+
) -> tuple:
|
186 |
"""
|
187 |
+
从生成的 3D 模型中提取 GLB 文件。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
"""
|
189 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
190 |
gs, mesh = unpack_state(state)
|
|
|
196 |
|
197 |
|
198 |
@spaces.GPU
|
199 |
+
def extract_gaussian(state: dict, req: gr.Request) -> tuple:
|
200 |
"""
|
201 |
+
从生成的 3D 模型中提取 Gaussian 文件。
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
"""
|
203 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
204 |
gs, _ = unpack_state(state)
|
|
|
208 |
return gaussian_path, gaussian_path
|
209 |
|
210 |
|
211 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
212 |
+
return {
|
213 |
+
'gaussian': {
|
214 |
+
**gs.init_params,
|
215 |
+
'_xyz': gs._xyz.cpu().numpy(),
|
216 |
+
'_features_dc': gs._features_dc.cpu().numpy(),
|
217 |
+
'_scaling': gs._scaling.cpu().numpy(),
|
218 |
+
'_rotation': gs._rotation.cpu().numpy(),
|
219 |
+
'_opacity': gs._opacity.cpu().numpy(),
|
220 |
+
},
|
221 |
+
'mesh': {
|
222 |
+
'vertices': mesh.vertices.cpu().numpy(),
|
223 |
+
'faces': mesh.faces.cpu().numpy(),
|
224 |
+
},
|
225 |
+
}
|
226 |
+
|
227 |
+
|
228 |
+
def unpack_state(state: dict) -> tuple:
|
229 |
+
gs = Gaussian(
|
230 |
+
aabb=state['gaussian']['aabb'],
|
231 |
+
sh_degree=state['gaussian']['sh_degree'],
|
232 |
+
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
233 |
+
scaling_bias=state['gaussian']['scaling_bias'],
|
234 |
+
opacity_bias=state['gaussian']['opacity_bias'],
|
235 |
+
scaling_activation=state['gaussian']['scaling_activation'],
|
236 |
+
)
|
237 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
238 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
239 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
240 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
241 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
242 |
+
|
243 |
+
mesh = edict(
|
244 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
245 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
246 |
+
)
|
247 |
+
|
248 |
+
return gs, mesh
|
249 |
+
|
250 |
+
|
251 |
+
def prepare_multi_example() -> list:
|
252 |
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
253 |
images = []
|
254 |
for case in multi_case:
|
|
|
262 |
return images
|
263 |
|
264 |
|
265 |
+
def split_image(image: Image.Image) -> list:
|
266 |
"""
|
267 |
+
将图像拆分为多个视图(不进行预处理)。
|
268 |
"""
|
269 |
image = np.array(image)
|
270 |
alpha = image[..., 3]
|
271 |
+
alpha = np.any(alpha > 0, axis=0)
|
272 |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
273 |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
274 |
images = []
|
275 |
for s, e in zip(start_pos, end_pos):
|
276 |
images.append(Image.fromarray(image[:, s:e+1]))
|
277 |
+
return [image for image in images]
|
278 |
|
279 |
|
280 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
281 |
gr.Markdown("""
|
282 |
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
|
283 |
+
* 上传图像后,点击图像选择目标区域,点击的点会在图像上显示。
|
|
|
|
|
|
|
|
|
284 |
""")
|
285 |
with gr.Row():
|
286 |
with gr.Column():
|
287 |
+
# 上传的图像不经过预处理,直接展示原始图像
|
288 |
+
image_prompt = gr.Image(type="numpy", label="Input Occlusion Image", height=512)
|
289 |
+
# 用于交互标注的图像,点击时更新显示标记
|
|
|
290 |
image_annotation = gr.Image(type="numpy", label="Select Point Prompts for Target Object", interactive=True, height=512)
|
291 |
+
# 存储点击点状态以及显示点击点坐标
|
292 |
points_state = gr.State([])
|
293 |
points_output = gr.Textbox(label="Target Object Prompts", interactive=False)
|
294 |
+
# 展示 SAM 分割结果(只用于显示,不允许上传)
|
295 |
+
segmented_output = gr.Image(label="Segmented Result", height=512, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
with gr.Accordion(label="Generation Settings", open=False):
|
298 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
|
|
|
305 |
with gr.Row():
|
306 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
307 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
308 |
+
# 其他组件(如生成按钮、视频展示、GLB 提取等)可根据需要添加
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
# 会话启动与结束
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
demo.load(start_session)
|
312 |
demo.unload(end_session)
|
313 |
|
314 |
+
# 上传图像后直接显示,不做预处理
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
image_prompt.upload(
|
316 |
+
lambda x: x,
|
317 |
inputs=[image_prompt],
|
318 |
+
outputs=[image_prompt]
|
319 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
+
# 点击 image_annotation 时调用 select_point_callback,
|
322 |
+
# 更新图像显示、点状态以及文本显示点击点信息
|
323 |
+
image_annotation.select(
|
324 |
+
select_point_callback,
|
325 |
+
inputs=[image_annotation, points_state],
|
326 |
+
outputs=[image_annotation, points_state, points_output]
|
327 |
+
)
|
328 |
+
|
329 |
+
# 添加一个按钮,用于运行 SAM 分割并展示叠加结果
|
330 |
+
segment_button = gr.Button("Run Segmentation")
|
331 |
+
segment_button.click(
|
332 |
+
segment_and_overlay,
|
333 |
+
inputs=[image_prompt, points_state],
|
334 |
+
outputs=[segmented_output]
|
335 |
+
)
|
336 |
|
337 |
+
# 后续可添加生成 3D 模型等其他流程...
|
338 |
|
339 |
+
# 启动 Gradio App
|
340 |
if __name__ == "__main__":
|
341 |
sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth")
|
342 |
model_type = "vit_h"
|
|
|
347 |
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
|
348 |
pipeline.cuda()
|
349 |
try:
|
350 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
351 |
except:
|
352 |
pass
|
353 |
demo.launch()
|