Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,641 +1,643 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
|
4 |
-
import os
|
5 |
-
|
6 |
-
import shutil
|
7 |
-
os.environ['SPCONV_ALGO'] = 'native'
|
8 |
-
from typing import *
|
9 |
-
import torch
|
10 |
-
import numpy as np
|
11 |
-
import imageio
|
12 |
-
from easydict import EasyDict as edict
|
13 |
-
from PIL import Image
|
14 |
-
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
|
15 |
-
from Amodal3R.representations import Gaussian, MeshExtractResult
|
16 |
-
from Amodal3R.utils import render_utils, postprocessing_utils
|
17 |
-
from segment_anything import sam_model_registry, SamPredictor
|
18 |
-
from huggingface_hub import hf_hub_download
|
19 |
-
import cv2
|
20 |
-
|
21 |
-
|
22 |
-
MAX_SEED = np.iinfo(np.int32).max
|
23 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
24 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
return gr.Button.update(interactive=
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
video =
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
glb.
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
gs
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
'
|
140 |
-
'
|
141 |
-
'
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
gs.
|
162 |
-
gs.
|
163 |
-
gs.
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
selected_index =
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
selected_index =
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
updated_image =
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
updated_text, dropdown = update_all_points(
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
return visibilty_mask_list
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
for m in
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
for m in
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
occluded_mask = cv2.
|
331 |
-
occluded_mask = (occluded_mask > 0).astype(np.uint8)
|
332 |
-
|
333 |
-
occluded_mask =
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
occluded_mask
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
"""
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
"""
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
*
|
438 |
-
*
|
439 |
-
*
|
440 |
-
""
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
with gr.Row():
|
450 |
-
|
451 |
-
|
452 |
-
with gr.Column():
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
with gr.Row():
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
*
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
with gr.Row():
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
with gr.Row():
|
496 |
-
|
497 |
-
with gr.Row():
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
|
|
|
|
641 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
|
4 |
+
import os
|
5 |
+
|
6 |
+
import shutil
|
7 |
+
os.environ['SPCONV_ALGO'] = 'native'
|
8 |
+
from typing import *
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
import imageio
|
12 |
+
from easydict import EasyDict as edict
|
13 |
+
from PIL import Image
|
14 |
+
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
|
15 |
+
from Amodal3R.representations import Gaussian, MeshExtractResult
|
16 |
+
from Amodal3R.utils import render_utils, postprocessing_utils
|
17 |
+
from segment_anything import sam_model_registry, SamPredictor
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
import cv2
|
20 |
+
|
21 |
+
|
22 |
+
MAX_SEED = np.iinfo(np.int32).max
|
23 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
24 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
25 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
26 |
+
os.environ['MASTER_PORT'] = '12355'
|
27 |
+
|
28 |
+
def start_session(req: gr.Request):
|
29 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
30 |
+
os.makedirs(user_dir, exist_ok=True)
|
31 |
+
|
32 |
+
def end_session(req: gr.Request):
|
33 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
34 |
+
shutil.rmtree(user_dir)
|
35 |
+
|
36 |
+
def change_message():
|
37 |
+
return "Please wait for a few seconds after uploading the image."
|
38 |
+
|
39 |
+
def reset_image(predictor, img):
|
40 |
+
img = np.array(img)
|
41 |
+
predictor.set_image(img)
|
42 |
+
original_img = img.copy()
|
43 |
+
return predictor, original_img, "The models are ready.", [], [], [], original_img
|
44 |
+
|
45 |
+
def button_clickable(selected_points):
|
46 |
+
if len(selected_points) > 0:
|
47 |
+
return gr.Button.update(interactive=True)
|
48 |
+
else:
|
49 |
+
return gr.Button.update(interactive=False)
|
50 |
+
|
51 |
+
def run_sam(img, predictor, selected_points):
|
52 |
+
if len(selected_points) == 0:
|
53 |
+
return np.zeros(img.shape[:2], dtype=np.uint8)
|
54 |
+
input_points = [p for p in selected_points]
|
55 |
+
input_labels = [1 for _ in range(len(selected_points))]
|
56 |
+
masks, _, _ = predictor.predict(
|
57 |
+
point_coords=np.array(input_points),
|
58 |
+
point_labels=np.array(input_labels),
|
59 |
+
multimask_output=False,
|
60 |
+
)
|
61 |
+
best_mask = masks[0].astype(np.uint8)
|
62 |
+
# dilate
|
63 |
+
if len(selected_points) > 1:
|
64 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
65 |
+
best_mask = cv2.dilate(best_mask, kernel, iterations=1)
|
66 |
+
best_mask = cv2.erode(best_mask, kernel, iterations=1)
|
67 |
+
return best_mask
|
68 |
+
|
69 |
+
|
70 |
+
@spaces.GPU
|
71 |
+
def image_to_3d(
|
72 |
+
image: np.ndarray,
|
73 |
+
mask: np.ndarray,
|
74 |
+
seed: int,
|
75 |
+
ss_guidance_strength: float,
|
76 |
+
ss_sampling_steps: int,
|
77 |
+
slat_guidance_strength: float,
|
78 |
+
slat_sampling_steps: int,
|
79 |
+
erode_kernel_size: int,
|
80 |
+
req: gr.Request,
|
81 |
+
) -> Tuple[dict, str]:
|
82 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
83 |
+
outputs = pipeline.run_multi_image(
|
84 |
+
[image],
|
85 |
+
[mask],
|
86 |
+
seed=seed,
|
87 |
+
formats=["gaussian", "mesh"],
|
88 |
+
sparse_structure_sampler_params={
|
89 |
+
"steps": ss_sampling_steps,
|
90 |
+
"cfg_strength": ss_guidance_strength,
|
91 |
+
},
|
92 |
+
slat_sampler_params={
|
93 |
+
"steps": slat_sampling_steps,
|
94 |
+
"cfg_strength": slat_guidance_strength,
|
95 |
+
},
|
96 |
+
mode="stochastic",
|
97 |
+
erode_kernel_size=erode_kernel_size,
|
98 |
+
)
|
99 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120, bg_color=(1,1,1))['color']
|
100 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
101 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
102 |
+
video_path = os.path.join(user_dir, 'sample.mp4')
|
103 |
+
imageio.mimsave(video_path, video, fps=15)
|
104 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
105 |
+
torch.cuda.empty_cache()
|
106 |
+
return state, video_path
|
107 |
+
|
108 |
+
|
109 |
+
@spaces.GPU(duration=90)
|
110 |
+
def extract_glb(
|
111 |
+
state: dict,
|
112 |
+
mesh_simplify: float,
|
113 |
+
texture_size: int,
|
114 |
+
req: gr.Request,
|
115 |
+
) -> tuple:
|
116 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
117 |
+
gs, mesh = unpack_state(state)
|
118 |
+
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
119 |
+
glb_path = os.path.join(user_dir, 'sample.glb')
|
120 |
+
glb.export(glb_path)
|
121 |
+
torch.cuda.empty_cache()
|
122 |
+
return glb_path, glb_path
|
123 |
+
|
124 |
+
|
125 |
+
@spaces.GPU
|
126 |
+
def extract_gaussian(state: dict, req: gr.Request) -> tuple:
|
127 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
128 |
+
gs, _ = unpack_state(state)
|
129 |
+
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
130 |
+
gs.save_ply(gaussian_path)
|
131 |
+
torch.cuda.empty_cache()
|
132 |
+
return gaussian_path, gaussian_path
|
133 |
+
|
134 |
+
|
135 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
136 |
+
return {
|
137 |
+
'gaussian': {
|
138 |
+
**gs.init_params,
|
139 |
+
'_xyz': gs._xyz.cpu().numpy(),
|
140 |
+
'_features_dc': gs._features_dc.cpu().numpy(),
|
141 |
+
'_scaling': gs._scaling.cpu().numpy(),
|
142 |
+
'_rotation': gs._rotation.cpu().numpy(),
|
143 |
+
'_opacity': gs._opacity.cpu().numpy(),
|
144 |
+
},
|
145 |
+
'mesh': {
|
146 |
+
'vertices': mesh.vertices.cpu().numpy(),
|
147 |
+
'faces': mesh.faces.cpu().numpy(),
|
148 |
+
},
|
149 |
+
}
|
150 |
+
|
151 |
+
|
152 |
+
def unpack_state(state: dict) -> tuple:
|
153 |
+
gs = Gaussian(
|
154 |
+
aabb=state['gaussian']['aabb'],
|
155 |
+
sh_degree=state['gaussian']['sh_degree'],
|
156 |
+
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
157 |
+
scaling_bias=state['gaussian']['scaling_bias'],
|
158 |
+
opacity_bias=state['gaussian']['opacity_bias'],
|
159 |
+
scaling_activation=state['gaussian']['scaling_activation'],
|
160 |
+
)
|
161 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
162 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
163 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
164 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
165 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
166 |
+
|
167 |
+
mesh = edict(
|
168 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
169 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
170 |
+
)
|
171 |
+
|
172 |
+
return gs, mesh
|
173 |
+
|
174 |
+
def get_sam_predictor():
|
175 |
+
sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth")
|
176 |
+
model_type = "vit_h"
|
177 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
178 |
+
sam_predictor = SamPredictor(sam)
|
179 |
+
return sam_predictor
|
180 |
+
|
181 |
+
|
182 |
+
def draw_points_on_image(image, point):
|
183 |
+
image_with_points = image.copy()
|
184 |
+
x, y = point
|
185 |
+
color = (255, 0, 0)
|
186 |
+
cv2.circle(image_with_points, (int(x), int(y)), radius=10, color=color, thickness=-1)
|
187 |
+
return image_with_points
|
188 |
+
|
189 |
+
|
190 |
+
def see_point(image, x, y):
|
191 |
+
updated_image = draw_points_on_image(image, [x,y])
|
192 |
+
return updated_image
|
193 |
+
|
194 |
+
def add_point(x, y, visible_points):
|
195 |
+
if [x, y] not in visible_points:
|
196 |
+
visible_points.append([x, y])
|
197 |
+
return visible_points
|
198 |
+
|
199 |
+
def delete_point(visible_points):
|
200 |
+
visible_points.pop()
|
201 |
+
return visible_points
|
202 |
+
|
203 |
+
|
204 |
+
def clear_all_points(image):
|
205 |
+
updated_image = image.copy()
|
206 |
+
return updated_image
|
207 |
+
|
208 |
+
def see_visible_points(image, visible_points):
|
209 |
+
updated_image = image.copy()
|
210 |
+
for p in visible_points:
|
211 |
+
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1)
|
212 |
+
return updated_image
|
213 |
+
|
214 |
+
def see_occlusion_points(image, occlusion_points):
|
215 |
+
updated_image = image.copy()
|
216 |
+
for p in occlusion_points:
|
217 |
+
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(0, 255, 0), thickness=-1)
|
218 |
+
return updated_image
|
219 |
+
|
220 |
+
def update_all_points(points):
|
221 |
+
text = f"Points: {points}"
|
222 |
+
dropdown_choices = [f"({p[0]}, {p[1]})" for p in points]
|
223 |
+
return text, gr.Dropdown(show_label=False, choices=dropdown_choices, value=None, interactive=True)
|
224 |
+
|
225 |
+
def delete_selected(image, visible_points, occlusion_points, occlusion_mask_list, selected_value, point_type):
|
226 |
+
if point_type == "visibility":
|
227 |
+
try:
|
228 |
+
selected_index = [f"({p[0]}, {p[1]})" for p in visible_points].index(selected_value)
|
229 |
+
except ValueError:
|
230 |
+
selected_index = None
|
231 |
+
if selected_index is not None and 0 <= selected_index < len(visible_points):
|
232 |
+
visible_points.pop(selected_index)
|
233 |
+
else:
|
234 |
+
try:
|
235 |
+
selected_index = [f"({p[0]}, {p[1]})" for p in occlusion_points].index(selected_value)
|
236 |
+
except ValueError:
|
237 |
+
selected_index = None
|
238 |
+
if selected_index is not None and 0 <= selected_index < len(occlusion_points):
|
239 |
+
occlusion_points.pop(selected_index)
|
240 |
+
occlusion_mask_list.pop(selected_index)
|
241 |
+
updated_image = image.copy()
|
242 |
+
updated_image = see_visible_points(updated_image, visible_points)
|
243 |
+
updated_image = see_occlusion_points(updated_image, occlusion_points)
|
244 |
+
if point_type == "visibility":
|
245 |
+
updated_text, dropdown = update_all_points(visible_points)
|
246 |
+
else:
|
247 |
+
updated_text, dropdown = update_all_points(occlusion_points)
|
248 |
+
return updated_image, visible_points, occlusion_points, updated_text, dropdown
|
249 |
+
|
250 |
+
def add_current_mask(visibility_mask, visibilty_mask_list, point_type):
|
251 |
+
if point_type == "visibility":
|
252 |
+
if len(visibilty_mask_list) > 0:
|
253 |
+
if np.array_equal(visibility_mask, visibilty_mask_list[-1]):
|
254 |
+
return visibilty_mask_list
|
255 |
+
visibilty_mask_list.append(visibility_mask)
|
256 |
+
return visibilty_mask_list
|
257 |
+
else: # the occlusion mask will be automatically added, so do nothing here
|
258 |
+
return visibilty_mask_list
|
259 |
+
|
260 |
+
def apply_mask_overlay(image, mask, color=(255, 0, 0)):
|
261 |
+
img_arr = image
|
262 |
+
overlay = img_arr.copy()
|
263 |
+
gray_color = np.array([200, 200, 200], dtype=np.uint8)
|
264 |
+
non_mask = mask == 0
|
265 |
+
overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8)
|
266 |
+
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
267 |
+
cv2.drawContours(overlay, contours, -1, color, 2)
|
268 |
+
return overlay
|
269 |
+
|
270 |
+
def vis_mask(image, mask_list):
|
271 |
+
updated_image = image.copy()
|
272 |
+
combined_mask = np.zeros_like(updated_image[:, :, 0])
|
273 |
+
for mask in mask_list:
|
274 |
+
combined_mask = cv2.bitwise_or(combined_mask, mask)
|
275 |
+
updated_image = apply_mask_overlay(updated_image, combined_mask)
|
276 |
+
return updated_image
|
277 |
+
|
278 |
+
def segment_and_overlay(image, points, sam_predictor, mask_list, point_type):
|
279 |
+
if point_type == "visibility":
|
280 |
+
visible_mask = run_sam(image, sam_predictor, points)
|
281 |
+
for mask in mask_list:
|
282 |
+
visible_mask = cv2.bitwise_or(visible_mask, mask)
|
283 |
+
overlaid = apply_mask_overlay(image, visible_mask * 255)
|
284 |
+
return overlaid, visible_mask, mask_list
|
285 |
+
else:
|
286 |
+
combined_occlusion_mask = np.zeros_like(image[:, :, 0])
|
287 |
+
mask_list = []
|
288 |
+
if len(points) != 0:
|
289 |
+
for point in points:
|
290 |
+
mask = run_sam(image, sam_predictor, [point])
|
291 |
+
mask_list.append(mask)
|
292 |
+
combined_occlusion_mask = cv2.bitwise_or(combined_occlusion_mask, mask)
|
293 |
+
overlaid = apply_mask_overlay(image, combined_occlusion_mask * 255, color=(0, 255, 0))
|
294 |
+
return overlaid, combined_occlusion_mask, mask_list
|
295 |
+
|
296 |
+
def delete_mask(visibility_mask_list, occlusion_mask_list, occlusion_points_state, point_type):
|
297 |
+
if point_type == "visibility":
|
298 |
+
if len(visibility_mask_list) > 0:
|
299 |
+
visibility_mask_list.pop()
|
300 |
+
else:
|
301 |
+
if len(occlusion_mask_list) > 0:
|
302 |
+
occlusion_mask_list.pop()
|
303 |
+
occlusion_points_state.pop()
|
304 |
+
return visibility_mask_list, occlusion_mask_list, occlusion_points_state
|
305 |
+
|
306 |
+
def check_combined_mask(image, visibility_mask, visibility_mask_list, occlusion_mask_list, scale=0.68):
|
307 |
+
if visibility_mask.sum() == 0:
|
308 |
+
return np.zeros_like(image), np.zeros_like(image[:, :, 0])
|
309 |
+
updated_image = image.copy()
|
310 |
+
combined_mask = np.zeros_like(updated_image[:, :, 0])
|
311 |
+
occluded_mask = np.zeros_like(updated_image[:, :, 0])
|
312 |
+
binary_visibility_masks = [(m > 0).astype(np.uint8) for m in visibility_mask_list]
|
313 |
+
combined_mask = np.zeros_like(binary_visibility_masks[0]) if binary_visibility_masks else (visibility_mask > 0).astype(np.uint8)
|
314 |
+
for m in binary_visibility_masks:
|
315 |
+
combined_mask = cv2.bitwise_or(combined_mask, m)
|
316 |
+
|
317 |
+
if len(binary_visibility_masks) > 1:
|
318 |
+
kernel = np.ones((5, 5), np.uint8)
|
319 |
+
combined_mask = cv2.dilate(combined_mask, kernel, iterations=1)
|
320 |
+
|
321 |
+
binary_occlusion_masks = [(m > 0).astype(np.uint8) for m in occlusion_mask_list]
|
322 |
+
occluded_mask = np.zeros_like(binary_occlusion_masks[0]) if binary_occlusion_masks else np.zeros_like(combined_mask)
|
323 |
+
for m in binary_occlusion_masks:
|
324 |
+
occluded_mask = cv2.bitwise_or(occluded_mask, m)
|
325 |
+
|
326 |
+
kernel_small = np.ones((3, 3), np.uint8)
|
327 |
+
if len(binary_occlusion_masks) > 0:
|
328 |
+
dilated = cv2.dilate(combined_mask, kernel_small, iterations=1)
|
329 |
+
boundary_mask = dilated - combined_mask
|
330 |
+
occluded_mask = cv2.bitwise_or(occluded_mask, boundary_mask)
|
331 |
+
occluded_mask = (occluded_mask > 0).astype(np.uint8)
|
332 |
+
occluded_mask = cv2.dilate(occluded_mask, kernel_small, iterations=1)
|
333 |
+
occluded_mask = (occluded_mask > 0).astype(np.uint8)
|
334 |
+
else:
|
335 |
+
occluded_mask = 1 - combined_mask
|
336 |
+
|
337 |
+
combined_mask[occluded_mask == 1] = 0
|
338 |
+
|
339 |
+
occluded_mask = (1-occluded_mask) * 255
|
340 |
+
|
341 |
+
masked_img = updated_image * combined_mask[:, :, None]
|
342 |
+
occluded_mask[combined_mask == 1] = 127
|
343 |
+
|
344 |
+
x, y, w, h = cv2.boundingRect(combined_mask.astype(np.uint8))
|
345 |
+
|
346 |
+
ori_h, ori_w = masked_img.shape[:2]
|
347 |
+
target_size = 512
|
348 |
+
scale_factor = target_size / max(w, h)
|
349 |
+
final_scale = scale_factor * scale
|
350 |
+
new_w = int(round(ori_w * final_scale))
|
351 |
+
new_h = int(round(ori_h * final_scale))
|
352 |
+
|
353 |
+
resized_occluded_mask = cv2.resize(occluded_mask.astype(np.uint8), (new_w, new_h), interpolation=cv2.INTER_NEAREST)
|
354 |
+
resized_img = cv2.resize(masked_img, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
|
355 |
+
|
356 |
+
final_img = np.zeros((target_size, target_size, 3), dtype=updated_image.dtype)
|
357 |
+
final_occluded_mask = np.ones((target_size, target_size), dtype=np.uint8) * 255
|
358 |
+
|
359 |
+
new_x = int(round(x * final_scale))
|
360 |
+
new_y = int(round(y * final_scale))
|
361 |
+
new_w_box = int(round(w * final_scale))
|
362 |
+
new_h_box = int(round(h * final_scale))
|
363 |
+
|
364 |
+
new_cx = new_x + new_w_box // 2
|
365 |
+
new_cy = new_y + new_h_box // 2
|
366 |
+
|
367 |
+
final_cx, final_cy = target_size // 2, target_size // 2
|
368 |
+
x_offset = final_cx - new_cx
|
369 |
+
y_offset = final_cy - new_cy
|
370 |
+
|
371 |
+
final_x_start = max(0, x_offset)
|
372 |
+
final_y_start = max(0, y_offset)
|
373 |
+
final_x_end = min(target_size, x_offset + new_w)
|
374 |
+
final_y_end = min(target_size, y_offset + new_h)
|
375 |
+
|
376 |
+
img_x_start = max(0, -x_offset)
|
377 |
+
img_y_start = max(0, -y_offset)
|
378 |
+
img_x_end = min(new_w, target_size - x_offset)
|
379 |
+
img_y_end = min(new_h, target_size - y_offset)
|
380 |
+
|
381 |
+
final_img[final_y_start:final_y_end, final_x_start:final_x_end] = resized_img[img_y_start:img_y_end, img_x_start:img_x_end]
|
382 |
+
final_occluded_mask[final_y_start:final_y_end, final_x_start:final_x_end] = resized_occluded_mask[img_y_start:img_y_end, img_x_start:img_x_end]
|
383 |
+
|
384 |
+
return final_img, final_occluded_mask
|
385 |
+
|
386 |
+
|
387 |
+
def get_point(img, point_type, visible_points_state, occlusion_points_state, evt: gr.SelectData):
|
388 |
+
updated_img = np.array(img).copy()
|
389 |
+
if point_type == "visibility":
|
390 |
+
visible_points_state = add_point(evt.index[0], evt.index[1], visible_points_state)
|
391 |
+
else:
|
392 |
+
occlusion_points_state = add_point(evt.index[0], evt.index[1], occlusion_points_state)
|
393 |
+
updated_img = see_visible_points(updated_img, visible_points_state)
|
394 |
+
updated_img = see_occlusion_points(updated_img, occlusion_points_state)
|
395 |
+
return updated_img, visible_points_state, occlusion_points_state
|
396 |
+
|
397 |
+
|
398 |
+
def change_point_type(point_type, visible_points_state, occlusion_points_state):
|
399 |
+
if point_type == "visibility":
|
400 |
+
text = f"Points: {visible_points_state}"
|
401 |
+
dropdown_choices = [f"({p[0]}, {p[1]})" for p in visible_points_state]
|
402 |
+
else:
|
403 |
+
text = f"Points: {occlusion_points_state}"
|
404 |
+
dropdown_choices = [f"({p[0]}, {p[1]})" for p in occlusion_points_state]
|
405 |
+
return text, gr.Dropdown(show_label=False, choices=dropdown_choices, value=None, interactive=True)
|
406 |
+
|
407 |
+
|
408 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
409 |
+
"""
|
410 |
+
Get the random seed.
|
411 |
+
"""
|
412 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
413 |
+
|
414 |
+
|
415 |
+
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
416 |
+
gr.Markdown("""
|
417 |
+
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
|
418 |
+
""")
|
419 |
+
|
420 |
+
predictor = gr.State(value=get_sam_predictor())
|
421 |
+
visible_points_state = gr.State(value=[])
|
422 |
+
occlusion_points_state = gr.State(value=[])
|
423 |
+
occlusion_mask = gr.State(value=None)
|
424 |
+
occlusion_mask_list = gr.State(value=[])
|
425 |
+
original_image = gr.State(value=None)
|
426 |
+
visibility_mask = gr.State(value=None)
|
427 |
+
visibility_mask_list = gr.State(value=[])
|
428 |
+
|
429 |
+
occluded_mask = gr.State(value=None)
|
430 |
+
output_buf = gr.State()
|
431 |
+
|
432 |
+
|
433 |
+
with gr.Row():
|
434 |
+
with gr.Column():
|
435 |
+
gr.Markdown("""
|
436 |
+
### Step 1 - Generate Visibility and Occlusion Mask.
|
437 |
+
* Please click "Load Example Image" when using the provided example images (bottom).
|
438 |
+
* Please wait for a few seconds after uploading the image. Segment Anything is getting ready.
|
439 |
+
* **Click to add the point prompts** to indicate the target object (multiple points supported) and occluders (one point for an occluder for better usability).
|
440 |
+
* "Add mask", current mask will be saved if the input needs to be added sequentially.
|
441 |
+
* The scale of target object can be adjusted for better reconstruction, we suggest 0.4 to 0.7 for most cases.
|
442 |
+
""")
|
443 |
+
with gr.Row():
|
444 |
+
input_image = gr.Image(interactive=True, type='pil', label='Input Occlusion Image', show_label=True, sources="upload", height=300)
|
445 |
+
input_with_prompt = gr.Image(type="numpy", label='Input with Prompt', interactive=False, height=300)
|
446 |
+
with gr.Row():
|
447 |
+
apply_example_btn = gr.Button("Load Example Image")
|
448 |
+
message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message")
|
449 |
+
with gr.Row():
|
450 |
+
point_type = gr.Radio(["visibility", "occlusion"], label="Point Prompt Type", value="visibility")
|
451 |
+
with gr.Row():
|
452 |
+
with gr.Column():
|
453 |
+
points_text = gr.Textbox(show_label=False, interactive=False)
|
454 |
+
with gr.Column():
|
455 |
+
points_dropdown = gr.Dropdown(show_label=False, choices=[], value=None, interactive=True)
|
456 |
+
delete_button = gr.Button("Delete Selected Point")
|
457 |
+
with gr.Row():
|
458 |
+
with gr.Column():
|
459 |
+
render_mask = gr.Image(label='Render Mask', interactive=False, height=300)
|
460 |
+
with gr.Row():
|
461 |
+
add_mask = gr.Button("Add Mask")
|
462 |
+
undo_mask = gr.Button("Undo Last Mask")
|
463 |
+
with gr.Column():
|
464 |
+
vis_input = gr.Image(label='Visible Input', interactive=False, height=300)
|
465 |
+
with gr.Row():
|
466 |
+
zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.68, step=0.1)
|
467 |
+
with gr.Row():
|
468 |
+
check_visible_input = gr.Button("Generate Occluded Input")
|
469 |
+
|
470 |
+
with gr.Column():
|
471 |
+
gr.Markdown("""
|
472 |
+
### Step 2 - 3D Amodal Reconstruction. (Thanks to [TRELLIS](https://huggingface.co/spaces/JeffreyXiang/TRELLIS) for the 3D rendering component!)
|
473 |
+
* Different random seeds can be tried in "Generation Settings", if you think the results are not ideal.
|
474 |
+
* The boundary of the segmentation may not be accurate, so here we provide the option to erode the visible area (try 0, 3 or 5).
|
475 |
+
* If the reconstructed 3D asset is satisfactory, interactive GLB file can be extracted (may look dull due to the absence of light source) and downloaded.
|
476 |
+
""")
|
477 |
+
with gr.Row():
|
478 |
+
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
479 |
+
with gr.Row():
|
480 |
+
with gr.Accordion(label="Generation Settings", open=False):
|
481 |
+
with gr.Row():
|
482 |
+
with gr.Column():
|
483 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
|
484 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
|
485 |
+
with gr.Column():
|
486 |
+
erode_kernel_size = gr.Slider(0, 5, label="Erode Kernel Size", value=3, step=1)
|
487 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
488 |
+
with gr.Row():
|
489 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
490 |
+
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
491 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
492 |
+
with gr.Row():
|
493 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
494 |
+
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
495 |
+
with gr.Row():
|
496 |
+
generate_btn = gr.Button("Amodal 3D Reconstruction")
|
497 |
+
with gr.Row():
|
498 |
+
model_output = gr.Model3D(label="Extracted GLB", pan_speed=0.5, height=300, clear_color=(0.9,0.9,0.9,1))
|
499 |
+
with gr.Row():
|
500 |
+
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
501 |
+
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
502 |
+
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
503 |
+
with gr.Row():
|
504 |
+
extract_glb_btn = gr.Button("Extract GLB")
|
505 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
506 |
+
|
507 |
+
with gr.Row():
|
508 |
+
examples = gr.Examples(
|
509 |
+
examples=[
|
510 |
+
f'assets/example_image/{image}'
|
511 |
+
for image in os.listdir("assets/example_image")
|
512 |
+
],
|
513 |
+
inputs=[input_image],
|
514 |
+
fn=lambda x: x,
|
515 |
+
outputs=[input_image],
|
516 |
+
run_on_click=True,
|
517 |
+
examples_per_page=12,
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
# # Handlers
|
522 |
+
demo.load(start_session)
|
523 |
+
demo.unload(end_session)
|
524 |
+
|
525 |
+
input_image.upload(
|
526 |
+
change_message,
|
527 |
+
[],
|
528 |
+
[message]
|
529 |
+
).then(
|
530 |
+
reset_image,
|
531 |
+
[predictor, input_image],
|
532 |
+
[predictor, original_image, message, visible_points_state, occlusion_points_state, occlusion_mask_list, input_with_prompt],
|
533 |
+
)
|
534 |
+
|
535 |
+
apply_example_btn.click(
|
536 |
+
change_message,
|
537 |
+
[],
|
538 |
+
[message]
|
539 |
+
).then(
|
540 |
+
reset_image,
|
541 |
+
inputs=[predictor, input_image],
|
542 |
+
outputs=[predictor, original_image, message, visible_points_state, occlusion_points_state, occlusion_mask_list, input_with_prompt]
|
543 |
+
)
|
544 |
+
input_image.select(
|
545 |
+
get_point,
|
546 |
+
inputs=[input_image, point_type, visible_points_state, occlusion_points_state],
|
547 |
+
outputs=[input_with_prompt, visible_points_state, occlusion_points_state]
|
548 |
+
)
|
549 |
+
|
550 |
+
point_type.change(
|
551 |
+
change_point_type,
|
552 |
+
inputs=[point_type, visible_points_state, occlusion_points_state],
|
553 |
+
outputs=[points_text, points_dropdown]
|
554 |
+
)
|
555 |
+
|
556 |
+
visible_points_state.change(
|
557 |
+
update_all_points,
|
558 |
+
inputs=[visible_points_state],
|
559 |
+
outputs=[points_text, points_dropdown]
|
560 |
+
).then(
|
561 |
+
segment_and_overlay,
|
562 |
+
inputs=[original_image, visible_points_state, predictor, visibility_mask_list, point_type],
|
563 |
+
outputs=[render_mask, visibility_mask, visibility_mask_list]
|
564 |
+
).then(
|
565 |
+
check_combined_mask,
|
566 |
+
inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale],
|
567 |
+
outputs=[vis_input, occluded_mask]
|
568 |
+
)
|
569 |
+
|
570 |
+
occlusion_points_state.change(
|
571 |
+
update_all_points,
|
572 |
+
inputs=[occlusion_points_state],
|
573 |
+
outputs=[points_text, points_dropdown]
|
574 |
+
).then(
|
575 |
+
segment_and_overlay,
|
576 |
+
inputs=[original_image, occlusion_points_state, predictor, occlusion_mask_list, point_type],
|
577 |
+
outputs=[render_mask, occlusion_mask, occlusion_mask_list]
|
578 |
+
).then(
|
579 |
+
check_combined_mask,
|
580 |
+
inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale],
|
581 |
+
outputs=[vis_input, occluded_mask]
|
582 |
+
)
|
583 |
+
|
584 |
+
delete_button.click(
|
585 |
+
delete_selected,
|
586 |
+
inputs=[original_image, visible_points_state, occlusion_points_state, occlusion_mask_list, points_dropdown, point_type],
|
587 |
+
outputs=[input_with_prompt, visible_points_state, occlusion_points_state, points_text, points_dropdown]
|
588 |
+
)
|
589 |
+
|
590 |
+
add_mask.click(
|
591 |
+
add_current_mask,
|
592 |
+
inputs=[visibility_mask, visibility_mask_list, point_type],
|
593 |
+
outputs=[visibility_mask_list]
|
594 |
+
)
|
595 |
+
|
596 |
+
undo_mask.click(
|
597 |
+
delete_mask,
|
598 |
+
inputs=[visibility_mask_list, occlusion_mask_list, occlusion_points_state, point_type],
|
599 |
+
outputs=[visibility_mask_list, occlusion_mask_list, occlusion_points_state]
|
600 |
+
)
|
601 |
+
|
602 |
+
check_visible_input.click(
|
603 |
+
check_combined_mask,
|
604 |
+
inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale],
|
605 |
+
outputs=[vis_input, occluded_mask]
|
606 |
+
)
|
607 |
+
|
608 |
+
|
609 |
+
# 3D Amodal Reconstruction
|
610 |
+
generate_btn.click(
|
611 |
+
get_seed,
|
612 |
+
inputs=[randomize_seed, seed],
|
613 |
+
outputs=[seed],
|
614 |
+
).then(
|
615 |
+
image_to_3d,
|
616 |
+
inputs=[vis_input, occluded_mask, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, erode_kernel_size],
|
617 |
+
outputs=[output_buf, video_output],
|
618 |
+
)
|
619 |
+
|
620 |
+
extract_glb_btn.click(
|
621 |
+
extract_glb,
|
622 |
+
inputs=[output_buf, mesh_simplify, texture_size],
|
623 |
+
outputs=[model_output, download_glb],
|
624 |
+
).then(
|
625 |
+
lambda: gr.Button(interactive=True),
|
626 |
+
outputs=[download_glb],
|
627 |
+
)
|
628 |
+
|
629 |
+
model_output.clear(
|
630 |
+
lambda: gr.Button(interactive=False),
|
631 |
+
outputs=[download_glb],
|
632 |
+
)
|
633 |
+
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
|
638 |
+
pipeline.cuda()
|
639 |
+
try:
|
640 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
641 |
+
except:
|
642 |
+
pass
|
643 |
demo.launch()
|