import gradio as gr import spaces from gradio_litmodel3d import LitModel3D import os import shutil os.environ['SPCONV_ALGO'] = 'native' from typing import * import torch import numpy as np import imageio from easydict import EasyDict as edict from PIL import Image from Amodal3R.pipelines import Amodal3RImageTo3DPipeline from Amodal3R.representations import Gaussian, MeshExtractResult from Amodal3R.utils import render_utils, postprocessing_utils from segment_anything import sam_model_registry, SamPredictor from huggingface_hub import hf_hub_download import cv2 MAX_SEED = np.iinfo(np.int32).max TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') os.makedirs(TMP_DIR, exist_ok=True) def start_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) def end_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) shutil.rmtree(user_dir) def select_point(predictor: SamPredictor, annotated_img: np.ndarray, orig_img: np.ndarray, sel_pix: list, point_type: str, evt: gr.SelectData): """ 当用户在标注图像上点击时: - 将点击坐标添加到 sel_pix(正/负 prompt 根据 point_type), - 根据 sel_pix 调用 SAM 得到 mask, - 在 annotated_img 上绘制所有已选点的标记, - 返回更新后的标注图像、SAM 输出(用于显示)及生成的 visible_mask(用于后续 pix2gestalt)。 """ # 拷贝原图(用于标注) img = annotated_img.copy() h_original, w_original, _ = orig_img.shape h_new, w_new = 256, 256 scale_x = w_new / w_original scale_y = h_new / h_original # 根据 prompt 类型添加点击点(evt.index 格式为 (x, y)) if point_type == 'positive_prompt': sel_pix.append((evt.index, 1)) elif point_type == 'negative_prompt': sel_pix.append((evt.index, 0)) else: sel_pix.append((evt.index, 1)) # 将原始尺寸的点转换到 256x256 尺寸(SAM 输入要求) processed_sel_pix = [] for point, label in sel_pix: x, y = point new_x = int(x * scale_x) new_y = int(y * scale_y) processed_sel_pix.append(([new_x, new_y], label)) visible_mask, overlay_mask = run_sam(predictor, processed_sel_pix) # overlay_mask 是 SAM 输出的 mask(256x256),调整尺寸到原图尺寸以便显示 mask = np.squeeze(overlay_mask[0][0]) # (256, 256) resized_mask = cv2.resize(mask.astype(np.uint8) * 255, (w_original, h_original), interpolation=cv2.INTER_AREA) resized_mask = resized_mask > 127 # 制作 overlay 信息(供 output_mask 使用) resized_overlay_mask = [(resized_mask, 'visible_mask')] # 绘制所有点的标记 COLORS = [(255, 0, 0), (0, 255, 0)] MARKERS = [1, 4] scaling_factor = min(h_original / 256, w_original / 256) marker_size = int(6 * scaling_factor) marker_thickness = int(2 * scaling_factor) for point, label in sel_pix: cv2.drawMarker(img, tuple(point), COLORS[label], markerType=MARKERS[label], markerSize=marker_size, thickness=marker_thickness) return img, (orig_img, resized_overlay_mask), visible_mask def undo_points(predictor, orig_img, sel_pix): """ 撤销最后一次点击: - 从 sel_pix 中 pop 出最后一个点, - 根据剩余点重新调用 SAM 得到 mask, - 返回更新后的图像和 mask。 """ temp = orig_img.copy() h_original, w_original, _ = orig_img.shape COLORS = [(255, 0, 0), (0, 255, 0)] MARKERS = [0, 5] scaling_factor = min(h_original / 256, w_original / 256) marker_size = int(6 * scaling_factor) marker_thickness = int(2 * scaling_factor) if len(sel_pix) > 0: sel_pix.pop() # 重新绘制剩余点 for point, label in sel_pix: cv2.drawMarker(temp, tuple(point), COLORS[label], markerType=MARKERS[label], markerSize=marker_size, thickness=marker_thickness) else: dummy_overlay_mask = [(np.zeros((h_original, w_original), dtype=np.uint8), 'visible_mask')] return orig_img, (orig_img, dummy_overlay_mask), [] visible_mask, overlay_mask = run_sam(predictor, sel_pix) mask = np.squeeze(overlay_mask[0][0]) resized_mask = cv2.resize(mask.astype(np.uint8) * 255, (w_original, h_original), interpolation=cv2.INTER_AREA) resized_mask = resized_mask > 127 resized_overlay_mask = [(resized_mask, 'visible_mask')] return temp, (orig_img, resized_overlay_mask), visible_mask def reset_image(predictor, img): """ 上传图像后调用: - 重置 predictor, - 设置 predictor 的输入图像, - 返回原图 """ predictor.set_image(img) original_img = img.copy() # 返回predictor,visible occlusion mask初始化, 原始图像 return predictor, img, img, original_img def button_clickable(selected_points): if len(selected_points) > 0: return gr.Button.update(interactive=True) else: return gr.Button.update(interactive=False) @spaces.GPU def run_sam(predictor: SamPredictor, image, selected_points): """ 调用 SAM 模型进行分割。 """ # 确保图像为 RGB 模式 if isinstance(image, np.ndarray): image = Image.fromarray(image) if image.mode != 'RGB': image = image.convert("RGB") if len(selected_points) == 0: return [], None input_points = [p for p, _ in selected_points] input_labels = [int(l) for _, l in selected_points] masks, _, _ = predictor.predict( point_coords=np.array(input_points), point_labels=input_labels, multimask_output=False, # 单对象输出 ) visible_mask = 255 * np.squeeze(masks).astype(np.uint8) return visible_mask, None def apply_mask_overlay(image: Image.Image, mask: np.ndarray) -> Image.Image: """ 在原图上叠加 mask:使用红色绘制 mask 的轮廓,非 mask 区域叠加浅灰色半透明遮罩。 """ img_arr = np.array(image) if mask.ndim == 3: mask = mask[:, :, 0] overlay = img_arr.copy() gray_color = np.array([200, 200, 200], dtype=np.uint8) non_mask = mask == 0 overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8) contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(overlay, contours, -1, (255, 0, 0), 2) return Image.fromarray(overlay) def segment_and_overlay(image: np.ndarray, points): """ 调用 run_sam 获得 mask,然后叠加显示分割结果。 """ if isinstance(image, np.ndarray): image = Image.fromarray(image) if image.mode != "RGB": image = image.convert("RGB") mask, _ = run_sam(sam_predictor, image, points) if mask == []: return image overlaid = apply_mask_overlay(image, mask) return overlaid def reset_points(): """ 清空点击点提示。 """ return [], "" @spaces.GPU def image_to_3d( image: Image.Image, multiimages: List[tuple], is_multiimage: bool, seed: int, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int, multiimage_algo: str, req: gr.Request, ) -> tuple: """ 将图像转换为 3D 模型。 """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) if not is_multiimage: outputs = pipeline.run( image, seed=seed, formats=["gaussian", "mesh"], preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, ) else: outputs = pipeline.run_multi_image( [img[0] for img in multiimages], seed=seed, formats=["gaussian", "mesh"], preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, mode=multiimage_algo, ) video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] video_path = os.path.join(user_dir, 'sample.mp4') imageio.mimsave(video_path, video, fps=15) state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) torch.cuda.empty_cache() return state, video_path @spaces.GPU(duration=90) def extract_glb( state: dict, mesh_simplify: float, texture_size: int, req: gr.Request, ) -> tuple: """ 从生成的 3D 模型中提取 GLB 文件。 """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) gs, mesh = unpack_state(state) glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) glb_path = os.path.join(user_dir, 'sample.glb') glb.export(glb_path) torch.cuda.empty_cache() return glb_path, glb_path @spaces.GPU def extract_gaussian(state: dict, req: gr.Request) -> tuple: """ 从生成的 3D 模型中提取 Gaussian 文件。 """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) gs, _ = unpack_state(state) gaussian_path = os.path.join(user_dir, 'sample.ply') gs.save_ply(gaussian_path) torch.cuda.empty_cache() return gaussian_path, gaussian_path def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: return { 'gaussian': { **gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy(), }, 'mesh': { 'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy(), }, } def unpack_state(state: dict) -> tuple: gs = Gaussian( aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation'], ) gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') mesh = edict( vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda'), ) return gs, mesh def prepare_multi_example() -> list: multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) images = [] for case in multi_case: _images = [] for i in range(1, 4): img = Image.open(f'assets/example_multi_image/{case}_{i}.png') W, H = img.size img = img.resize((int(W / H * 512), 512)) _images.append(np.array(img)) images.append(Image.fromarray(np.concatenate(_images, axis=1))) return images def split_image(image: Image.Image) -> list: """ 将图像拆分为多个视图(不进行预处理)。 """ image = np.array(image) alpha = image[..., 3] alpha = np.any(alpha > 0, axis=0) start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() images = [] for s, e in zip(start_pos, end_pos): images.append(Image.fromarray(image[:, s:e+1])) return [image for image in images] def get_sam_predictor(): sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth") model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.cuda() sam_predictor = SamPredictor(sam) return sam_predictor def draw_points_on_image(image, point, point_type): """在图像上绘制所有点,points 为 [(x, y, point_type), ...]""" image_with_points = image.copy() x, y = point color = (255, 0, 0) if point_type == "visible" else (0, 255, 0) cv2.circle(image_with_points, (int(x), int(y)), radius=10, color=color, thickness=-1) return image_with_points def see_point(image, x, y, point_type): """ see操作:不修改 points 列表,仅在图像上临时显示这个点, 并返回更新后的图像和当前列表(不更新)。 """ # 复制当前列表,并在副本中加上新点(仅用于显示) updated_image = draw_points_on_image(image, [x,y], point_type) return updated_image def add_point(x, y, point_type, visible_points, occlusion_points): """ add操作:将新点添加到 points 列表中, 并返回更新后的图像和新的点列表。 """ if point_type == "visible": visible_points.append([x, y]) else: occlusion_points.append([x, y]) return visible_points, occlusion_points def delete_point(point_type, visible_points, occlusion_points): """ delete操作:删除 points 列表中的最后一个点, 并返回更新后的图像和新的点列表。 """ if point_type == "visible": visible_points.pop() else: occlusion_points.pop() return visible_points, occlusion_points def clear_all_points(image): """ 清除所有点:返回原图、空的 visible 和 occlusion 列表, 以及更新后的点文本信息和空下拉菜单列表。 """ updated_image = image.copy() empty_list = [] text = "Visible Points: []\nOcclusion Points: []" return updated_image, empty_list, empty_list, text, [], [] def see_visible_points(image, visible_points): """ 在图像上绘制所有 visible 点(红色)。 """ updated_image = image.copy() for p in visible_points: cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1) return updated_image def see_occlusion_points(image, occlusion_points): """ 在图像上绘制所有 occlusion 点(绿色)。 """ updated_image = image.copy() for p in occlusion_points: cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(0, 255, 0), thickness=-1) return updated_image def update_all_points(visible_points, occlusion_points): """ 返回一个文本描述当前两个点列表,以及对应的下拉菜单选项(字符串格式)。 """ text = f"Visible Points: {visible_points}\nOcclusion Points: {occlusion_points}" visible_dropdown = [f"({p[0]}, {p[1]})" for p in visible_points] occlusion_dropdown = [f"({p[0]}, {p[1]})" for p in occlusion_points] return text, visible_dropdown, occlusion_dropdown def delete_selected_visible(image, visible_points, occlusion_points, selected_index): """ 删除 visible 点列表中指定索引的点,并更新图像和显示信息。 """ if selected_index is not None and 0 <= selected_index < len(visible_points): visible_points.pop(selected_index) updated_image = image.copy() # 重新绘制所有 visible 点(红色) for p in visible_points: cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1) updated_text, vis_dropdown, occ_dropdown = update_all_points(visible_points, occlusion_points) return updated_image, visible_points, occlusion_points, updated_text, vis_dropdown, occ_dropdown def delete_selected_occlusion(image, visible_points, occlusion_points, selected_index): """ 删除 occlusion 点列表中指定索引的点,并更新图像和显示信息。 """ if selected_index is not None and 0 <= selected_index < len(occlusion_points): occlusion_points.pop(selected_index) updated_image = image.copy() # 重新绘制所有 occlusion 点(绿色) for p in occlusion_points: cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(0, 255, 0), thickness=-1) updated_text, vis_dropdown, occ_dropdown = update_all_points(visible_points, occlusion_points) return updated_image, visible_points, occlusion_points, updated_text, vis_dropdown, occ_dropdown with gr.Blocks(delete_cache=(600, 600)) as demo: gr.Markdown(""" ## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/) * Upload an image and click "Generate" to create a 3D asset. * Target object selection. Multiple point prompts are supported until you get the ideal visible area. * Occluders selection, this can be done by squential point prompts. You can choose "all occ", then all the other areas except the target object will be treated as occluders. * Different random seeds can be tried in "Generation Settings", if you think the results are not ideal. * If the reconstruction 3D asset is satisfactory, you can extract the GLB file and download it. """) # 定义各状态变量 predictor = gr.State(value=get_sam_predictor()) visible_points_state = gr.State(value=[]) occlusion_points_state = gr.State(value=[]) original_image = gr.State(value=None) with gr.Row(): with gr.Column(): input_image = gr.Image(type="numpy", label='Input Occlusion Image', height=300) fg_bg_radio = gr.Radio(['positive_prompt', 'negative_prompt'], label='Point Prompt Type') with gr.Row(): x_input = gr.Number(label="X Coordinate", value=0) y_input = gr.Number(label="Y Coordinate", value=0) point_type = gr.Radio(choices=["visible", "occlusion"], label="Point Type", value="visible") with gr.Row(): see_button = gr.Button("See") add_button = gr.Button("Add") with gr.Row(): # 新增按钮:Clear、分别查看 visible/occlusion clear_button = gr.Button("Clear Points") see_visible_button = gr.Button("See Visible Points") see_occlusion_button = gr.Button("See Occlusion Points") with gr.Row(): # 新增文本框实时显示点列表 points_text = gr.Textbox(label="Points List", interactive=False) with gr.Row(): # 新增下拉菜单,用户可选择需要删除的点 visible_points_dropdown = gr.Dropdown(label="Select Visible Point to Delete", choices=[], interactive=True) occlusion_points_dropdown = gr.Dropdown(label="Select Occlusion Point to Delete", choices=[], interactive=True) with gr.Row(): delete_visible_button = gr.Button("Delete Selected Visible") delete_occlusion_button = gr.Button("Delete Selected Occlusion") with gr.Column(): # 用于显示 SAM 分割结果 visible_mask = gr.Image(label='Visible Mask', interactive=False, height=300) occlusion_mask = gr.Image(label='Occlusion Mask', interactive=False, height=300) # --------------------------- # 原有交互逻辑(略) # --------------------------- input_image.upload( reset_image, [predictor, input_image], [predictor, visible_mask, occlusion_mask, original_image] ) see_button.click( see_point, inputs=[input_image, x_input, y_input, point_type], outputs=[input_image] ) add_button.click( add_point, inputs=[x_input, y_input, point_type, visible_points_state, occlusion_points_state], outputs=[visible_points_state, occlusion_points_state] ) # --------------------------- # 新增的交互逻辑 # --------------------------- clear_button.click( clear_all_points, inputs=[original_image], outputs=[input_image, visible_points_state, occlusion_points_state, points_text, visible_points_dropdown, occlusion_points_dropdown] ) see_visible_button.click( see_visible_points, inputs=[input_image, visible_points_state], outputs=input_image ) see_occlusion_button.click( see_occlusion_points, inputs=[input_image, occlusion_points_state], outputs=input_image ) # 当 visible_points_state 或 occlusion_points_state 变化时,更新文本框和下拉菜单 visible_points_state.change( update_all_points, inputs=[visible_points_state, occlusion_points_state], outputs=[points_text, visible_points_dropdown, occlusion_points_dropdown] ) occlusion_points_state.change( update_all_points, inputs=[visible_points_state, occlusion_points_state], outputs=[points_text, visible_points_dropdown, occlusion_points_dropdown] ) delete_visible_button.click( delete_selected_visible, inputs=[input_image, visible_points_state, occlusion_points_state, visible_points_dropdown], outputs=[input_image, visible_points_state, occlusion_points_state, points_text, visible_points_dropdown, occlusion_points_dropdown] ) delete_occlusion_button.click( delete_selected_occlusion, inputs=[input_image, visible_points_state, occlusion_points_state, occlusion_points_dropdown], outputs=[input_image, visible_points_state, occlusion_points_state, points_text, visible_points_dropdown, occlusion_points_dropdown] ) # 启动 Gradio App if __name__ == "__main__": pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R") pipeline.cuda() try: pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) except: pass demo.launch()