Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # This is a modified version of cocoeval.py where we also have the densepose evaluation. | |
| __author__ = "tsungyi" | |
| import copy | |
| import datetime | |
| import logging | |
| import numpy as np | |
| import pickle | |
| import time | |
| from collections import defaultdict | |
| from enum import Enum | |
| from typing import Any, Dict, Tuple | |
| import scipy.spatial.distance as ssd | |
| import torch | |
| import torch.nn.functional as F | |
| from pycocotools import mask as maskUtils | |
| from scipy.io import loadmat | |
| from scipy.ndimage import zoom as spzoom | |
| from detectron2.utils.file_io import PathManager | |
| from densepose.converters.chart_output_to_chart_result import resample_uv_tensors_to_bbox | |
| from densepose.converters.segm_to_mask import ( | |
| resample_coarse_segm_tensor_to_bbox, | |
| resample_fine_and_coarse_segm_tensors_to_bbox, | |
| ) | |
| from densepose.modeling.cse.utils import squared_euclidean_distance_matrix | |
| from densepose.structures import DensePoseDataRelative | |
| from densepose.structures.mesh import create_mesh | |
| logger = logging.getLogger(__name__) | |
| class DensePoseEvalMode(str, Enum): | |
| # use both masks and geodesic distances (GPS * IOU) to compute scores | |
| GPSM = "gpsm" | |
| # use only geodesic distances (GPS) to compute scores | |
| GPS = "gps" | |
| # use only masks (IOU) to compute scores | |
| IOU = "iou" | |
| class DensePoseDataMode(str, Enum): | |
| # use estimated IUV data (default mode) | |
| IUV_DT = "iuvdt" | |
| # use ground truth IUV data | |
| IUV_GT = "iuvgt" | |
| # use ground truth labels I and set UV to 0 | |
| I_GT_UV_0 = "igtuv0" | |
| # use ground truth labels I and estimated UV coordinates | |
| I_GT_UV_DT = "igtuvdt" | |
| # use estimated labels I and set UV to 0 | |
| I_DT_UV_0 = "idtuv0" | |
| class DensePoseCocoEval: | |
| # Interface for evaluating detection on the Microsoft COCO dataset. | |
| # | |
| # The usage for CocoEval is as follows: | |
| # cocoGt=..., cocoDt=... # load dataset and results | |
| # E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object | |
| # E.params.recThrs = ...; # set parameters as desired | |
| # E.evaluate(); # run per image evaluation | |
| # E.accumulate(); # accumulate per image results | |
| # E.summarize(); # display summary metrics of results | |
| # For example usage see evalDemo.m and http://mscoco.org/. | |
| # | |
| # The evaluation parameters are as follows (defaults in brackets): | |
| # imgIds - [all] N img ids to use for evaluation | |
| # catIds - [all] K cat ids to use for evaluation | |
| # iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation | |
| # recThrs - [0:.01:1] R=101 recall thresholds for evaluation | |
| # areaRng - [...] A=4 object area ranges for evaluation | |
| # maxDets - [1 10 100] M=3 thresholds on max detections per image | |
| # iouType - ['segm'] set iouType to 'segm', 'bbox', 'keypoints' or 'densepose' | |
| # iouType replaced the now DEPRECATED useSegm parameter. | |
| # useCats - [1] if true use category labels for evaluation | |
| # Note: if useCats=0 category labels are ignored as in proposal scoring. | |
| # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. | |
| # | |
| # evaluate(): evaluates detections on every image and every category and | |
| # concats the results into the "evalImgs" with fields: | |
| # dtIds - [1xD] id for each of the D detections (dt) | |
| # gtIds - [1xG] id for each of the G ground truths (gt) | |
| # dtMatches - [TxD] matching gt id at each IoU or 0 | |
| # gtMatches - [TxG] matching dt id at each IoU or 0 | |
| # dtScores - [1xD] confidence of each dt | |
| # gtIgnore - [1xG] ignore flag for each gt | |
| # dtIgnore - [TxD] ignore flag for each dt at each IoU | |
| # | |
| # accumulate(): accumulates the per-image, per-category evaluation | |
| # results in "evalImgs" into the dictionary "eval" with fields: | |
| # params - parameters used for evaluation | |
| # date - date evaluation was performed | |
| # counts - [T,R,K,A,M] parameter dimensions (see above) | |
| # precision - [TxRxKxAxM] precision for every evaluation setting | |
| # recall - [TxKxAxM] max recall for every evaluation setting | |
| # Note: precision and recall==-1 for settings with no gt objects. | |
| # | |
| # See also coco, mask, pycocoDemo, pycocoEvalDemo | |
| # | |
| # Microsoft COCO Toolbox. version 2.0 | |
| # Data, paper, and tutorials available at: http://mscoco.org/ | |
| # Code written by Piotr Dollar and Tsung-Yi Lin, 2015. | |
| # Licensed under the Simplified BSD License [see coco/license.txt] | |
| def __init__( | |
| self, | |
| cocoGt=None, | |
| cocoDt=None, | |
| iouType: str = "densepose", | |
| multi_storage=None, | |
| embedder=None, | |
| dpEvalMode: DensePoseEvalMode = DensePoseEvalMode.GPS, | |
| dpDataMode: DensePoseDataMode = DensePoseDataMode.IUV_DT, | |
| ): | |
| """ | |
| Initialize CocoEval using coco APIs for gt and dt | |
| :param cocoGt: coco object with ground truth annotations | |
| :param cocoDt: coco object with detection results | |
| :return: None | |
| """ | |
| self.cocoGt = cocoGt # ground truth COCO API | |
| self.cocoDt = cocoDt # detections COCO API | |
| self.multi_storage = multi_storage | |
| self.embedder = embedder | |
| self._dpEvalMode = dpEvalMode | |
| self._dpDataMode = dpDataMode | |
| self.evalImgs = defaultdict(list) # per-image per-category eval results [KxAxI] | |
| self.eval = {} # accumulated evaluation results | |
| self._gts = defaultdict(list) # gt for evaluation | |
| self._dts = defaultdict(list) # dt for evaluation | |
| self.params = Params(iouType=iouType) # parameters | |
| self._paramsEval = {} # parameters for evaluation | |
| self.stats = [] # result summarization | |
| self.ious = {} # ious between all gts and dts | |
| if cocoGt is not None: | |
| self.params.imgIds = sorted(cocoGt.getImgIds()) | |
| self.params.catIds = sorted(cocoGt.getCatIds()) | |
| self.ignoreThrBB = 0.7 | |
| self.ignoreThrUV = 0.9 | |
| def _loadGEval(self): | |
| smpl_subdiv_fpath = PathManager.get_local_path( | |
| "https://dl.fbaipublicfiles.com/densepose/data/SMPL_subdiv.mat" | |
| ) | |
| pdist_transform_fpath = PathManager.get_local_path( | |
| "https://dl.fbaipublicfiles.com/densepose/data/SMPL_SUBDIV_TRANSFORM.mat" | |
| ) | |
| pdist_matrix_fpath = PathManager.get_local_path( | |
| "https://dl.fbaipublicfiles.com/densepose/data/Pdist_matrix.pkl", timeout_sec=120 | |
| ) | |
| SMPL_subdiv = loadmat(smpl_subdiv_fpath) | |
| self.PDIST_transform = loadmat(pdist_transform_fpath) | |
| self.PDIST_transform = self.PDIST_transform["index"].squeeze() | |
| UV = np.array([SMPL_subdiv["U_subdiv"], SMPL_subdiv["V_subdiv"]]).squeeze() | |
| ClosestVertInds = np.arange(UV.shape[1]) + 1 | |
| self.Part_UVs = [] | |
| self.Part_ClosestVertInds = [] | |
| for i in np.arange(24): | |
| self.Part_UVs.append(UV[:, SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)]) | |
| self.Part_ClosestVertInds.append( | |
| ClosestVertInds[SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)] | |
| ) | |
| with open(pdist_matrix_fpath, "rb") as hFile: | |
| arrays = pickle.load(hFile, encoding="latin1") | |
| self.Pdist_matrix = arrays["Pdist_matrix"] | |
| self.Part_ids = np.array(SMPL_subdiv["Part_ID_subdiv"].squeeze()) | |
| # Mean geodesic distances for parts. | |
| self.Mean_Distances = np.array([0, 0.351, 0.107, 0.126, 0.237, 0.173, 0.142, 0.128, 0.150]) | |
| # Coarse Part labels. | |
| self.CoarseParts = np.array( | |
| [0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8] | |
| ) | |
| def _prepare(self): | |
| """ | |
| Prepare ._gts and ._dts for evaluation based on params | |
| :return: None | |
| """ | |
| def _toMask(anns, coco): | |
| # modify ann['segmentation'] by reference | |
| for ann in anns: | |
| # safeguard for invalid segmentation annotation; | |
| # annotations containing empty lists exist in the posetrack | |
| # dataset. This is not a correct segmentation annotation | |
| # in terms of COCO format; we need to deal with it somehow | |
| segm = ann["segmentation"] | |
| if type(segm) == list and len(segm) == 0: | |
| ann["segmentation"] = None | |
| continue | |
| rle = coco.annToRLE(ann) | |
| ann["segmentation"] = rle | |
| def _getIgnoreRegion(iid, coco): | |
| img = coco.imgs[iid] | |
| if "ignore_regions_x" not in img.keys(): | |
| return None | |
| if len(img["ignore_regions_x"]) == 0: | |
| return None | |
| rgns_merged = [ | |
| [v for xy in zip(region_x, region_y) for v in xy] | |
| for region_x, region_y in zip(img["ignore_regions_x"], img["ignore_regions_y"]) | |
| ] | |
| rles = maskUtils.frPyObjects(rgns_merged, img["height"], img["width"]) | |
| rle = maskUtils.merge(rles) | |
| return maskUtils.decode(rle) | |
| def _checkIgnore(dt, iregion): | |
| if iregion is None: | |
| return True | |
| bb = np.array(dt["bbox"]).astype(int) | |
| x1, y1, x2, y2 = bb[0], bb[1], bb[0] + bb[2], bb[1] + bb[3] | |
| x2 = min([x2, iregion.shape[1]]) | |
| y2 = min([y2, iregion.shape[0]]) | |
| if bb[2] * bb[3] == 0: | |
| return False | |
| crop_iregion = iregion[y1:y2, x1:x2] | |
| if crop_iregion.sum() == 0: | |
| return True | |
| if "densepose" not in dt.keys(): # filtering boxes | |
| return crop_iregion.sum() / bb[2] / bb[3] < self.ignoreThrBB | |
| # filtering UVs | |
| ignoremask = np.require(crop_iregion, requirements=["F"]) | |
| mask = self._extract_mask(dt) | |
| uvmask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"]) | |
| uvmask_ = maskUtils.encode(uvmask) | |
| ignoremask_ = maskUtils.encode(ignoremask) | |
| uviou = maskUtils.iou([uvmask_], [ignoremask_], [1])[0] | |
| return uviou < self.ignoreThrUV | |
| p = self.params | |
| if p.useCats: | |
| gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) | |
| dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) | |
| else: | |
| gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) | |
| dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) | |
| imns = self.cocoGt.loadImgs(p.imgIds) | |
| self.size_mapping = {} | |
| for im in imns: | |
| self.size_mapping[im["id"]] = [im["height"], im["width"]] | |
| # if iouType == 'uv', add point gt annotations | |
| if p.iouType == "densepose": | |
| self._loadGEval() | |
| # convert ground truth to mask if iouType == 'segm' | |
| if p.iouType == "segm": | |
| _toMask(gts, self.cocoGt) | |
| _toMask(dts, self.cocoDt) | |
| # set ignore flag | |
| for gt in gts: | |
| gt["ignore"] = gt["ignore"] if "ignore" in gt else 0 | |
| gt["ignore"] = "iscrowd" in gt and gt["iscrowd"] | |
| if p.iouType == "keypoints": | |
| gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"] | |
| if p.iouType == "densepose": | |
| gt["ignore"] = ("dp_x" in gt) == 0 | |
| if p.iouType == "segm": | |
| gt["ignore"] = gt["segmentation"] is None | |
| self._gts = defaultdict(list) # gt for evaluation | |
| self._dts = defaultdict(list) # dt for evaluation | |
| self._igrgns = defaultdict(list) | |
| for gt in gts: | |
| iid = gt["image_id"] | |
| if iid not in self._igrgns.keys(): | |
| self._igrgns[iid] = _getIgnoreRegion(iid, self.cocoGt) | |
| if _checkIgnore(gt, self._igrgns[iid]): | |
| self._gts[iid, gt["category_id"]].append(gt) | |
| for dt in dts: | |
| iid = dt["image_id"] | |
| if (iid not in self._igrgns) or _checkIgnore(dt, self._igrgns[iid]): | |
| self._dts[iid, dt["category_id"]].append(dt) | |
| self.evalImgs = defaultdict(list) # per-image per-category evaluation results | |
| self.eval = {} # accumulated evaluation results | |
| def evaluate(self): | |
| """ | |
| Run per image evaluation on given images and store results (a list of dict) in self.evalImgs | |
| :return: None | |
| """ | |
| tic = time.time() | |
| logger.info("Running per image DensePose evaluation... {}".format(self.params.iouType)) | |
| p = self.params | |
| # add backward compatibility if useSegm is specified in params | |
| if p.useSegm is not None: | |
| p.iouType = "segm" if p.useSegm == 1 else "bbox" | |
| logger.info("useSegm (deprecated) is not None. Running DensePose evaluation") | |
| p.imgIds = list(np.unique(p.imgIds)) | |
| if p.useCats: | |
| p.catIds = list(np.unique(p.catIds)) | |
| p.maxDets = sorted(p.maxDets) | |
| self.params = p | |
| self._prepare() | |
| # loop through images, area range, max detection number | |
| catIds = p.catIds if p.useCats else [-1] | |
| if p.iouType in ["segm", "bbox"]: | |
| computeIoU = self.computeIoU | |
| elif p.iouType == "keypoints": | |
| computeIoU = self.computeOks | |
| elif p.iouType == "densepose": | |
| computeIoU = self.computeOgps | |
| if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}: | |
| self.real_ious = { | |
| (imgId, catId): self.computeDPIoU(imgId, catId) | |
| for imgId in p.imgIds | |
| for catId in catIds | |
| } | |
| self.ious = { | |
| (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds | |
| } | |
| evaluateImg = self.evaluateImg | |
| maxDet = p.maxDets[-1] | |
| self.evalImgs = [ | |
| evaluateImg(imgId, catId, areaRng, maxDet) | |
| for catId in catIds | |
| for areaRng in p.areaRng | |
| for imgId in p.imgIds | |
| ] | |
| self._paramsEval = copy.deepcopy(self.params) | |
| toc = time.time() | |
| logger.info("DensePose evaluation DONE (t={:0.2f}s).".format(toc - tic)) | |
| def getDensePoseMask(self, polys): | |
| maskGen = np.zeros([256, 256]) | |
| stop = min(len(polys) + 1, 15) | |
| for i in range(1, stop): | |
| if polys[i - 1]: | |
| currentMask = maskUtils.decode(polys[i - 1]) | |
| maskGen[currentMask > 0] = i | |
| return maskGen | |
| def _generate_rlemask_on_image(self, mask, imgId, data): | |
| bbox_xywh = np.array(data["bbox"]) | |
| x, y, w, h = bbox_xywh | |
| im_h, im_w = self.size_mapping[imgId] | |
| im_mask = np.zeros((im_h, im_w), dtype=np.uint8) | |
| if mask is not None: | |
| x0 = max(int(x), 0) | |
| x1 = min(int(x + w), im_w, int(x) + mask.shape[1]) | |
| y0 = max(int(y), 0) | |
| y1 = min(int(y + h), im_h, int(y) + mask.shape[0]) | |
| y = int(y) | |
| x = int(x) | |
| im_mask[y0:y1, x0:x1] = mask[y0 - y : y1 - y, x0 - x : x1 - x] | |
| im_mask = np.require(np.asarray(im_mask > 0), dtype=np.uint8, requirements=["F"]) | |
| rle_mask = maskUtils.encode(np.array(im_mask[:, :, np.newaxis], order="F"))[0] | |
| return rle_mask | |
| def computeDPIoU(self, imgId, catId): | |
| p = self.params | |
| if p.useCats: | |
| gt = self._gts[imgId, catId] | |
| dt = self._dts[imgId, catId] | |
| else: | |
| gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
| dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
| if len(gt) == 0 and len(dt) == 0: | |
| return [] | |
| inds = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
| dt = [dt[i] for i in inds] | |
| if len(dt) > p.maxDets[-1]: | |
| dt = dt[0 : p.maxDets[-1]] | |
| gtmasks = [] | |
| for g in gt: | |
| if DensePoseDataRelative.S_KEY in g: | |
| # convert DensePose mask to a binary mask | |
| mask = np.minimum(self.getDensePoseMask(g[DensePoseDataRelative.S_KEY]), 1.0) | |
| _, _, w, h = g["bbox"] | |
| scale_x = float(max(w, 1)) / mask.shape[1] | |
| scale_y = float(max(h, 1)) / mask.shape[0] | |
| mask = spzoom(mask, (scale_y, scale_x), order=1, prefilter=False) | |
| mask = np.array(mask > 0.5, dtype=np.uint8) | |
| rle_mask = self._generate_rlemask_on_image(mask, imgId, g) | |
| elif "segmentation" in g: | |
| segmentation = g["segmentation"] | |
| if isinstance(segmentation, list) and segmentation: | |
| # polygons | |
| im_h, im_w = self.size_mapping[imgId] | |
| rles = maskUtils.frPyObjects(segmentation, im_h, im_w) | |
| rle_mask = maskUtils.merge(rles) | |
| elif isinstance(segmentation, dict): | |
| if isinstance(segmentation["counts"], list): | |
| # uncompressed RLE | |
| im_h, im_w = self.size_mapping[imgId] | |
| rle_mask = maskUtils.frPyObjects(segmentation, im_h, im_w) | |
| else: | |
| # compressed RLE | |
| rle_mask = segmentation | |
| else: | |
| rle_mask = self._generate_rlemask_on_image(None, imgId, g) | |
| else: | |
| rle_mask = self._generate_rlemask_on_image(None, imgId, g) | |
| gtmasks.append(rle_mask) | |
| dtmasks = [] | |
| for d in dt: | |
| mask = self._extract_mask(d) | |
| mask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"]) | |
| rle_mask = self._generate_rlemask_on_image(mask, imgId, d) | |
| dtmasks.append(rle_mask) | |
| # compute iou between each dt and gt region | |
| iscrowd = [int(o.get("iscrowd", 0)) for o in gt] | |
| iousDP = maskUtils.iou(dtmasks, gtmasks, iscrowd) | |
| return iousDP | |
| def computeIoU(self, imgId, catId): | |
| p = self.params | |
| if p.useCats: | |
| gt = self._gts[imgId, catId] | |
| dt = self._dts[imgId, catId] | |
| else: | |
| gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
| dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
| if len(gt) == 0 and len(dt) == 0: | |
| return [] | |
| inds = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
| dt = [dt[i] for i in inds] | |
| if len(dt) > p.maxDets[-1]: | |
| dt = dt[0 : p.maxDets[-1]] | |
| if p.iouType == "segm": | |
| g = [g["segmentation"] for g in gt if g["segmentation"] is not None] | |
| d = [d["segmentation"] for d in dt if d["segmentation"] is not None] | |
| elif p.iouType == "bbox": | |
| g = [g["bbox"] for g in gt] | |
| d = [d["bbox"] for d in dt] | |
| else: | |
| raise Exception("unknown iouType for iou computation") | |
| # compute iou between each dt and gt region | |
| iscrowd = [int(o.get("iscrowd", 0)) for o in gt] | |
| ious = maskUtils.iou(d, g, iscrowd) | |
| return ious | |
| def computeOks(self, imgId, catId): | |
| p = self.params | |
| # dimension here should be Nxm | |
| gts = self._gts[imgId, catId] | |
| dts = self._dts[imgId, catId] | |
| inds = np.argsort([-d["score"] for d in dts], kind="mergesort") | |
| dts = [dts[i] for i in inds] | |
| if len(dts) > p.maxDets[-1]: | |
| dts = dts[0 : p.maxDets[-1]] | |
| # if len(gts) == 0 and len(dts) == 0: | |
| if len(gts) == 0 or len(dts) == 0: | |
| return [] | |
| ious = np.zeros((len(dts), len(gts))) | |
| sigmas = ( | |
| np.array( | |
| [ | |
| 0.26, | |
| 0.25, | |
| 0.25, | |
| 0.35, | |
| 0.35, | |
| 0.79, | |
| 0.79, | |
| 0.72, | |
| 0.72, | |
| 0.62, | |
| 0.62, | |
| 1.07, | |
| 1.07, | |
| 0.87, | |
| 0.87, | |
| 0.89, | |
| 0.89, | |
| ] | |
| ) | |
| / 10.0 | |
| ) | |
| vars = (sigmas * 2) ** 2 | |
| k = len(sigmas) | |
| # compute oks between each detection and ground truth object | |
| for j, gt in enumerate(gts): | |
| # create bounds for ignore regions(double the gt bbox) | |
| g = np.array(gt["keypoints"]) | |
| xg = g[0::3] | |
| yg = g[1::3] | |
| vg = g[2::3] | |
| k1 = np.count_nonzero(vg > 0) | |
| bb = gt["bbox"] | |
| x0 = bb[0] - bb[2] | |
| x1 = bb[0] + bb[2] * 2 | |
| y0 = bb[1] - bb[3] | |
| y1 = bb[1] + bb[3] * 2 | |
| for i, dt in enumerate(dts): | |
| d = np.array(dt["keypoints"]) | |
| xd = d[0::3] | |
| yd = d[1::3] | |
| if k1 > 0: | |
| # measure the per-keypoint distance if keypoints visible | |
| dx = xd - xg | |
| dy = yd - yg | |
| else: | |
| # measure minimum distance to keypoints in (x0,y0) & (x1,y1) | |
| z = np.zeros(k) | |
| dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0) | |
| dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0) | |
| e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2 | |
| if k1 > 0: | |
| e = e[vg > 0] | |
| ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] | |
| return ious | |
| def _extract_mask(self, dt: Dict[str, Any]) -> np.ndarray: | |
| if "densepose" in dt: | |
| densepose_results_quantized = dt["densepose"] | |
| return densepose_results_quantized.labels_uv_uint8[0].numpy() | |
| elif "cse_mask" in dt: | |
| return dt["cse_mask"] | |
| elif "coarse_segm" in dt: | |
| dy = max(int(dt["bbox"][3]), 1) | |
| dx = max(int(dt["bbox"][2]), 1) | |
| return ( | |
| F.interpolate( | |
| dt["coarse_segm"].unsqueeze(0), | |
| (dy, dx), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| .squeeze(0) | |
| .argmax(0) | |
| .numpy() | |
| .astype(np.uint8) | |
| ) | |
| elif "record_id" in dt: | |
| assert ( | |
| self.multi_storage is not None | |
| ), f"Storage record id encountered in a detection {dt}, but no storage provided!" | |
| record = self.multi_storage.get(dt["rank"], dt["record_id"]) | |
| coarse_segm = record["coarse_segm"] | |
| dy = max(int(dt["bbox"][3]), 1) | |
| dx = max(int(dt["bbox"][2]), 1) | |
| return ( | |
| F.interpolate( | |
| coarse_segm.unsqueeze(0), | |
| (dy, dx), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| .squeeze(0) | |
| .argmax(0) | |
| .numpy() | |
| .astype(np.uint8) | |
| ) | |
| else: | |
| raise Exception(f"No mask data in the detection: {dt}") | |
| raise ValueError('The prediction dict needs to contain either "densepose" or "cse_mask"') | |
| def _extract_iuv( | |
| self, densepose_data: np.ndarray, py: np.ndarray, px: np.ndarray, gt: Dict[str, Any] | |
| ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
| """ | |
| Extract arrays of I, U and V values at given points as numpy arrays | |
| given the data mode stored in self._dpDataMode | |
| """ | |
| if self._dpDataMode == DensePoseDataMode.IUV_DT: | |
| # estimated labels and UV (default) | |
| ipoints = densepose_data[0, py, px] | |
| upoints = densepose_data[1, py, px] / 255.0 # convert from uint8 by /255. | |
| vpoints = densepose_data[2, py, px] / 255.0 | |
| elif self._dpDataMode == DensePoseDataMode.IUV_GT: | |
| # ground truth | |
| ipoints = np.array(gt["dp_I"]) | |
| upoints = np.array(gt["dp_U"]) | |
| vpoints = np.array(gt["dp_V"]) | |
| elif self._dpDataMode == DensePoseDataMode.I_GT_UV_0: | |
| # ground truth labels, UV = 0 | |
| ipoints = np.array(gt["dp_I"]) | |
| upoints = upoints * 0.0 | |
| vpoints = vpoints * 0.0 | |
| elif self._dpDataMode == DensePoseDataMode.I_GT_UV_DT: | |
| # ground truth labels, estimated UV | |
| ipoints = np.array(gt["dp_I"]) | |
| upoints = densepose_data[1, py, px] / 255.0 # convert from uint8 by /255. | |
| vpoints = densepose_data[2, py, px] / 255.0 | |
| elif self._dpDataMode == DensePoseDataMode.I_DT_UV_0: | |
| # estimated labels, UV = 0 | |
| ipoints = densepose_data[0, py, px] | |
| upoints = upoints * 0.0 | |
| vpoints = vpoints * 0.0 | |
| else: | |
| raise ValueError(f"Unknown data mode: {self._dpDataMode}") | |
| return ipoints, upoints, vpoints | |
| def computeOgps_single_pair(self, dt, gt, py, px, pt_mask): | |
| if "densepose" in dt: | |
| ipoints, upoints, vpoints = self.extract_iuv_from_quantized(dt, gt, py, px, pt_mask) | |
| return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) | |
| elif "u" in dt: | |
| ipoints, upoints, vpoints = self.extract_iuv_from_raw(dt, gt, py, px, pt_mask) | |
| return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) | |
| elif "record_id" in dt: | |
| assert ( | |
| self.multi_storage is not None | |
| ), f"Storage record id encountered in detection {dt}, but no storage provided!" | |
| record = self.multi_storage.get(dt["rank"], dt["record_id"]) | |
| record["bbox"] = dt["bbox"] | |
| if "u" in record: | |
| ipoints, upoints, vpoints = self.extract_iuv_from_raw(record, gt, py, px, pt_mask) | |
| return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) | |
| elif "embedding" in record: | |
| return self.computeOgps_single_pair_cse( | |
| dt, | |
| gt, | |
| py, | |
| px, | |
| pt_mask, | |
| record["coarse_segm"], | |
| record["embedding"], | |
| record["bbox"], | |
| ) | |
| else: | |
| raise Exception(f"Unknown record format: {record}") | |
| elif "embedding" in dt: | |
| return self.computeOgps_single_pair_cse( | |
| dt, gt, py, px, pt_mask, dt["coarse_segm"], dt["embedding"], dt["bbox"] | |
| ) | |
| raise Exception(f"Unknown detection format: {dt}") | |
| def extract_iuv_from_quantized(self, dt, gt, py, px, pt_mask): | |
| densepose_results_quantized = dt["densepose"] | |
| ipoints, upoints, vpoints = self._extract_iuv( | |
| densepose_results_quantized.labels_uv_uint8.numpy(), py, px, gt | |
| ) | |
| ipoints[pt_mask == -1] = 0 | |
| return ipoints, upoints, vpoints | |
| def extract_iuv_from_raw(self, dt, gt, py, px, pt_mask): | |
| labels_dt = resample_fine_and_coarse_segm_tensors_to_bbox( | |
| dt["fine_segm"].unsqueeze(0), | |
| dt["coarse_segm"].unsqueeze(0), | |
| dt["bbox"], | |
| ) | |
| uv = resample_uv_tensors_to_bbox( | |
| dt["u"].unsqueeze(0), dt["v"].unsqueeze(0), labels_dt.squeeze(0), dt["bbox"] | |
| ) | |
| labels_uv_uint8 = torch.cat((labels_dt.byte(), (uv * 255).clamp(0, 255).byte())) | |
| ipoints, upoints, vpoints = self._extract_iuv(labels_uv_uint8.numpy(), py, px, gt) | |
| ipoints[pt_mask == -1] = 0 | |
| return ipoints, upoints, vpoints | |
| def computeOgps_single_pair_iuv(self, dt, gt, ipoints, upoints, vpoints): | |
| cVertsGT, ClosestVertsGTTransformed = self.findAllClosestVertsGT(gt) | |
| cVerts = self.findAllClosestVertsUV(upoints, vpoints, ipoints) | |
| # Get pairwise geodesic distances between gt and estimated mesh points. | |
| dist = self.getDistancesUV(ClosestVertsGTTransformed, cVerts) | |
| # Compute the Ogps measure. | |
| # Find the mean geodesic normalization distance for | |
| # each GT point, based on which part it is on. | |
| Current_Mean_Distances = self.Mean_Distances[ | |
| self.CoarseParts[self.Part_ids[cVertsGT[cVertsGT > 0].astype(int) - 1]] | |
| ] | |
| return dist, Current_Mean_Distances | |
| def computeOgps_single_pair_cse( | |
| self, dt, gt, py, px, pt_mask, coarse_segm, embedding, bbox_xywh_abs | |
| ): | |
| # 0-based mesh vertex indices | |
| cVertsGT = torch.as_tensor(gt["dp_vertex"], dtype=torch.int64) | |
| # label for each pixel of the bbox, [H, W] tensor of long | |
| labels_dt = resample_coarse_segm_tensor_to_bbox( | |
| coarse_segm.unsqueeze(0), bbox_xywh_abs | |
| ).squeeze(0) | |
| x, y, w, h = bbox_xywh_abs | |
| # embedding for each pixel of the bbox, [D, H, W] tensor of float32 | |
| embedding = F.interpolate( | |
| embedding.unsqueeze(0), (int(h), int(w)), mode="bilinear", align_corners=False | |
| ).squeeze(0) | |
| # valid locations py, px | |
| py_pt = torch.from_numpy(py[pt_mask > -1]) | |
| px_pt = torch.from_numpy(px[pt_mask > -1]) | |
| cVerts = torch.ones_like(cVertsGT) * -1 | |
| cVerts[pt_mask > -1] = self.findClosestVertsCse( | |
| embedding, py_pt, px_pt, labels_dt, gt["ref_model"] | |
| ) | |
| # Get pairwise geodesic distances between gt and estimated mesh points. | |
| dist = self.getDistancesCse(cVertsGT, cVerts, gt["ref_model"]) | |
| # normalize distances | |
| if (gt["ref_model"] == "smpl_27554") and ("dp_I" in gt): | |
| Current_Mean_Distances = self.Mean_Distances[ | |
| self.CoarseParts[np.array(gt["dp_I"], dtype=int)] | |
| ] | |
| else: | |
| Current_Mean_Distances = 0.255 | |
| return dist, Current_Mean_Distances | |
| def computeOgps(self, imgId, catId): | |
| p = self.params | |
| # dimension here should be Nxm | |
| g = self._gts[imgId, catId] | |
| d = self._dts[imgId, catId] | |
| inds = np.argsort([-d_["score"] for d_ in d], kind="mergesort") | |
| d = [d[i] for i in inds] | |
| if len(d) > p.maxDets[-1]: | |
| d = d[0 : p.maxDets[-1]] | |
| # if len(gts) == 0 and len(dts) == 0: | |
| if len(g) == 0 or len(d) == 0: | |
| return [] | |
| ious = np.zeros((len(d), len(g))) | |
| # compute opgs between each detection and ground truth object | |
| # sigma = self.sigma #0.255 # dist = 0.3m corresponds to ogps = 0.5 | |
| # 1 # dist = 0.3m corresponds to ogps = 0.96 | |
| # 1.45 # dist = 1.7m (person height) corresponds to ogps = 0.5) | |
| for j, gt in enumerate(g): | |
| if not gt["ignore"]: | |
| g_ = gt["bbox"] | |
| for i, dt in enumerate(d): | |
| # | |
| dy = int(dt["bbox"][3]) | |
| dx = int(dt["bbox"][2]) | |
| dp_x = np.array(gt["dp_x"]) * g_[2] / 255.0 | |
| dp_y = np.array(gt["dp_y"]) * g_[3] / 255.0 | |
| py = (dp_y + g_[1] - dt["bbox"][1]).astype(int) | |
| px = (dp_x + g_[0] - dt["bbox"][0]).astype(int) | |
| # | |
| pts = np.zeros(len(px)) | |
| pts[px >= dx] = -1 | |
| pts[py >= dy] = -1 | |
| pts[px < 0] = -1 | |
| pts[py < 0] = -1 | |
| if len(pts) < 1: | |
| ogps = 0.0 | |
| elif np.max(pts) == -1: | |
| ogps = 0.0 | |
| else: | |
| px[pts == -1] = 0 | |
| py[pts == -1] = 0 | |
| dists_between_matches, dist_norm_coeffs = self.computeOgps_single_pair( | |
| dt, gt, py, px, pts | |
| ) | |
| # Compute gps | |
| ogps_values = np.exp( | |
| -(dists_between_matches**2) / (2 * (dist_norm_coeffs**2)) | |
| ) | |
| # | |
| ogps = np.mean(ogps_values) if len(ogps_values) > 0 else 0.0 | |
| ious[i, j] = ogps | |
| gbb = [gt["bbox"] for gt in g] | |
| dbb = [dt["bbox"] for dt in d] | |
| # compute iou between each dt and gt region | |
| iscrowd = [int(o.get("iscrowd", 0)) for o in g] | |
| ious_bb = maskUtils.iou(dbb, gbb, iscrowd) | |
| return ious, ious_bb | |
| def evaluateImg(self, imgId, catId, aRng, maxDet): | |
| """ | |
| perform evaluation for single category and image | |
| :return: dict (single image results) | |
| """ | |
| p = self.params | |
| if p.useCats: | |
| gt = self._gts[imgId, catId] | |
| dt = self._dts[imgId, catId] | |
| else: | |
| gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
| dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
| if len(gt) == 0 and len(dt) == 0: | |
| return None | |
| for g in gt: | |
| # g['_ignore'] = g['ignore'] | |
| if g["ignore"] or (g["area"] < aRng[0] or g["area"] > aRng[1]): | |
| g["_ignore"] = True | |
| else: | |
| g["_ignore"] = False | |
| # sort dt highest score first, sort gt ignore last | |
| gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort") | |
| gt = [gt[i] for i in gtind] | |
| dtind = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
| dt = [dt[i] for i in dtind[0:maxDet]] | |
| iscrowd = [int(o.get("iscrowd", 0)) for o in gt] | |
| # load computed ious | |
| if p.iouType == "densepose": | |
| # print('Checking the length', len(self.ious[imgId, catId])) | |
| # if len(self.ious[imgId, catId]) == 0: | |
| # print(self.ious[imgId, catId]) | |
| ious = ( | |
| self.ious[imgId, catId][0][:, gtind] | |
| if len(self.ious[imgId, catId]) > 0 | |
| else self.ious[imgId, catId] | |
| ) | |
| ioubs = ( | |
| self.ious[imgId, catId][1][:, gtind] | |
| if len(self.ious[imgId, catId]) > 0 | |
| else self.ious[imgId, catId] | |
| ) | |
| if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}: | |
| iousM = ( | |
| self.real_ious[imgId, catId][:, gtind] | |
| if len(self.real_ious[imgId, catId]) > 0 | |
| else self.real_ious[imgId, catId] | |
| ) | |
| else: | |
| ious = ( | |
| self.ious[imgId, catId][:, gtind] | |
| if len(self.ious[imgId, catId]) > 0 | |
| else self.ious[imgId, catId] | |
| ) | |
| T = len(p.iouThrs) | |
| G = len(gt) | |
| D = len(dt) | |
| gtm = np.zeros((T, G)) | |
| dtm = np.zeros((T, D)) | |
| gtIg = np.array([g["_ignore"] for g in gt]) | |
| dtIg = np.zeros((T, D)) | |
| if np.all(gtIg) and p.iouType == "densepose": | |
| dtIg = np.logical_or(dtIg, True) | |
| if len(ious) > 0: # and not p.iouType == 'densepose': | |
| for tind, t in enumerate(p.iouThrs): | |
| for dind, d in enumerate(dt): | |
| # information about best match so far (m=-1 -> unmatched) | |
| iou = min([t, 1 - 1e-10]) | |
| m = -1 | |
| for gind, _g in enumerate(gt): | |
| # if this gt already matched, and not a crowd, continue | |
| if gtm[tind, gind] > 0 and not iscrowd[gind]: | |
| continue | |
| # if dt matched to reg gt, and on ignore gt, stop | |
| if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1: | |
| break | |
| if p.iouType == "densepose": | |
| if self._dpEvalMode == DensePoseEvalMode.GPSM: | |
| new_iou = np.sqrt(iousM[dind, gind] * ious[dind, gind]) | |
| elif self._dpEvalMode == DensePoseEvalMode.IOU: | |
| new_iou = iousM[dind, gind] | |
| elif self._dpEvalMode == DensePoseEvalMode.GPS: | |
| new_iou = ious[dind, gind] | |
| else: | |
| new_iou = ious[dind, gind] | |
| if new_iou < iou: | |
| continue | |
| if new_iou == 0.0: | |
| continue | |
| # if match successful and best so far, store appropriately | |
| iou = new_iou | |
| m = gind | |
| # if match made store id of match for both dt and gt | |
| if m == -1: | |
| continue | |
| dtIg[tind, dind] = gtIg[m] | |
| dtm[tind, dind] = gt[m]["id"] | |
| gtm[tind, m] = d["id"] | |
| if p.iouType == "densepose": | |
| if not len(ioubs) == 0: | |
| for dind, d in enumerate(dt): | |
| # information about best match so far (m=-1 -> unmatched) | |
| if dtm[tind, dind] == 0: | |
| ioub = 0.8 | |
| m = -1 | |
| for gind, _g in enumerate(gt): | |
| # if this gt already matched, and not a crowd, continue | |
| if gtm[tind, gind] > 0 and not iscrowd[gind]: | |
| continue | |
| # continue to next gt unless better match made | |
| if ioubs[dind, gind] < ioub: | |
| continue | |
| # if match successful and best so far, store appropriately | |
| ioub = ioubs[dind, gind] | |
| m = gind | |
| # if match made store id of match for both dt and gt | |
| if m > -1: | |
| dtIg[:, dind] = gtIg[m] | |
| if gtIg[m]: | |
| dtm[tind, dind] = gt[m]["id"] | |
| gtm[tind, m] = d["id"] | |
| # set unmatched detections outside of area range to ignore | |
| a = np.array([d["area"] < aRng[0] or d["area"] > aRng[1] for d in dt]).reshape((1, len(dt))) | |
| dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0))) | |
| # store results for given image and category | |
| # print('Done with the function', len(self.ious[imgId, catId])) | |
| return { | |
| "image_id": imgId, | |
| "category_id": catId, | |
| "aRng": aRng, | |
| "maxDet": maxDet, | |
| "dtIds": [d["id"] for d in dt], | |
| "gtIds": [g["id"] for g in gt], | |
| "dtMatches": dtm, | |
| "gtMatches": gtm, | |
| "dtScores": [d["score"] for d in dt], | |
| "gtIgnore": gtIg, | |
| "dtIgnore": dtIg, | |
| } | |
| def accumulate(self, p=None): | |
| """ | |
| Accumulate per image evaluation results and store the result in self.eval | |
| :param p: input params for evaluation | |
| :return: None | |
| """ | |
| logger.info("Accumulating evaluation results...") | |
| tic = time.time() | |
| if not self.evalImgs: | |
| logger.info("Please run evaluate() first") | |
| # allows input customized parameters | |
| if p is None: | |
| p = self.params | |
| p.catIds = p.catIds if p.useCats == 1 else [-1] | |
| T = len(p.iouThrs) | |
| R = len(p.recThrs) | |
| K = len(p.catIds) if p.useCats else 1 | |
| A = len(p.areaRng) | |
| M = len(p.maxDets) | |
| precision = -(np.ones((T, R, K, A, M))) # -1 for the precision of absent categories | |
| recall = -(np.ones((T, K, A, M))) | |
| # create dictionary for future indexing | |
| logger.info("Categories: {}".format(p.catIds)) | |
| _pe = self._paramsEval | |
| catIds = _pe.catIds if _pe.useCats else [-1] | |
| setK = set(catIds) | |
| setA = set(map(tuple, _pe.areaRng)) | |
| setM = set(_pe.maxDets) | |
| setI = set(_pe.imgIds) | |
| # get inds to evaluate | |
| k_list = [n for n, k in enumerate(p.catIds) if k in setK] | |
| m_list = [m for n, m in enumerate(p.maxDets) if m in setM] | |
| a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] | |
| i_list = [n for n, i in enumerate(p.imgIds) if i in setI] | |
| I0 = len(_pe.imgIds) | |
| A0 = len(_pe.areaRng) | |
| # retrieve E at each category, area range, and max number of detections | |
| for k, k0 in enumerate(k_list): | |
| Nk = k0 * A0 * I0 | |
| for a, a0 in enumerate(a_list): | |
| Na = a0 * I0 | |
| for m, maxDet in enumerate(m_list): | |
| E = [self.evalImgs[Nk + Na + i] for i in i_list] | |
| E = [e for e in E if e is not None] | |
| if len(E) == 0: | |
| continue | |
| dtScores = np.concatenate([e["dtScores"][0:maxDet] for e in E]) | |
| # different sorting method generates slightly different results. | |
| # mergesort is used to be consistent as Matlab implementation. | |
| inds = np.argsort(-dtScores, kind="mergesort") | |
| dtm = np.concatenate([e["dtMatches"][:, 0:maxDet] for e in E], axis=1)[:, inds] | |
| dtIg = np.concatenate([e["dtIgnore"][:, 0:maxDet] for e in E], axis=1)[:, inds] | |
| gtIg = np.concatenate([e["gtIgnore"] for e in E]) | |
| npig = np.count_nonzero(gtIg == 0) | |
| if npig == 0: | |
| continue | |
| tps = np.logical_and(dtm, np.logical_not(dtIg)) | |
| fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg)) | |
| tp_sum = np.cumsum(tps, axis=1).astype(dtype=float) | |
| fp_sum = np.cumsum(fps, axis=1).astype(dtype=float) | |
| for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): | |
| tp = np.array(tp) | |
| fp = np.array(fp) | |
| nd = len(tp) | |
| rc = tp / npig | |
| pr = tp / (fp + tp + np.spacing(1)) | |
| q = np.zeros((R,)) | |
| if nd: | |
| recall[t, k, a, m] = rc[-1] | |
| else: | |
| recall[t, k, a, m] = 0 | |
| # numpy is slow without cython optimization for accessing elements | |
| # use python array gets significant speed improvement | |
| pr = pr.tolist() | |
| q = q.tolist() | |
| for i in range(nd - 1, 0, -1): | |
| if pr[i] > pr[i - 1]: | |
| pr[i - 1] = pr[i] | |
| inds = np.searchsorted(rc, p.recThrs, side="left") | |
| try: | |
| for ri, pi in enumerate(inds): | |
| q[ri] = pr[pi] | |
| except Exception: | |
| pass | |
| precision[t, :, k, a, m] = np.array(q) | |
| logger.info( | |
| "Final: max precision {}, min precision {}".format(np.max(precision), np.min(precision)) | |
| ) | |
| self.eval = { | |
| "params": p, | |
| "counts": [T, R, K, A, M], | |
| "date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
| "precision": precision, | |
| "recall": recall, | |
| } | |
| toc = time.time() | |
| logger.info("DONE (t={:0.2f}s).".format(toc - tic)) | |
| def summarize(self): | |
| """ | |
| Compute and display summary metrics for evaluation results. | |
| Note this function can *only* be applied on the default parameter setting | |
| """ | |
| def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100): | |
| p = self.params | |
| iStr = " {:<18} {} @[ {}={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}" | |
| titleStr = "Average Precision" if ap == 1 else "Average Recall" | |
| typeStr = "(AP)" if ap == 1 else "(AR)" | |
| measure = "IoU" | |
| if self.params.iouType == "keypoints": | |
| measure = "OKS" | |
| elif self.params.iouType == "densepose": | |
| measure = "OGPS" | |
| iouStr = ( | |
| "{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1]) | |
| if iouThr is None | |
| else "{:0.2f}".format(iouThr) | |
| ) | |
| aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] | |
| mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] | |
| if ap == 1: | |
| # dimension of precision: [TxRxKxAxM] | |
| s = self.eval["precision"] | |
| # IoU | |
| if iouThr is not None: | |
| t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0] | |
| s = s[t] | |
| s = s[:, :, :, aind, mind] | |
| else: | |
| # dimension of recall: [TxKxAxM] | |
| s = self.eval["recall"] | |
| if iouThr is not None: | |
| t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0] | |
| s = s[t] | |
| s = s[:, :, aind, mind] | |
| if len(s[s > -1]) == 0: | |
| mean_s = -1 | |
| else: | |
| mean_s = np.mean(s[s > -1]) | |
| logger.info(iStr.format(titleStr, typeStr, measure, iouStr, areaRng, maxDets, mean_s)) | |
| return mean_s | |
| def _summarizeDets(): | |
| stats = np.zeros((12,)) | |
| stats[0] = _summarize(1) | |
| stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2]) | |
| stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2]) | |
| stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2]) | |
| stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2]) | |
| stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2]) | |
| stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) | |
| stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) | |
| stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) | |
| stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2]) | |
| stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2]) | |
| stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2]) | |
| return stats | |
| def _summarizeKps(): | |
| stats = np.zeros((10,)) | |
| stats[0] = _summarize(1, maxDets=20) | |
| stats[1] = _summarize(1, maxDets=20, iouThr=0.5) | |
| stats[2] = _summarize(1, maxDets=20, iouThr=0.75) | |
| stats[3] = _summarize(1, maxDets=20, areaRng="medium") | |
| stats[4] = _summarize(1, maxDets=20, areaRng="large") | |
| stats[5] = _summarize(0, maxDets=20) | |
| stats[6] = _summarize(0, maxDets=20, iouThr=0.5) | |
| stats[7] = _summarize(0, maxDets=20, iouThr=0.75) | |
| stats[8] = _summarize(0, maxDets=20, areaRng="medium") | |
| stats[9] = _summarize(0, maxDets=20, areaRng="large") | |
| return stats | |
| def _summarizeUvs(): | |
| stats = [_summarize(1, maxDets=self.params.maxDets[0])] | |
| min_threshold = self.params.iouThrs.min() | |
| if min_threshold <= 0.201: | |
| stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.2)] | |
| if min_threshold <= 0.301: | |
| stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.3)] | |
| if min_threshold <= 0.401: | |
| stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.4)] | |
| stats += [ | |
| _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5), | |
| _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75), | |
| _summarize(1, maxDets=self.params.maxDets[0], areaRng="medium"), | |
| _summarize(1, maxDets=self.params.maxDets[0], areaRng="large"), | |
| _summarize(0, maxDets=self.params.maxDets[0]), | |
| _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5), | |
| _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75), | |
| _summarize(0, maxDets=self.params.maxDets[0], areaRng="medium"), | |
| _summarize(0, maxDets=self.params.maxDets[0], areaRng="large"), | |
| ] | |
| return np.array(stats) | |
| def _summarizeUvsOld(): | |
| stats = np.zeros((18,)) | |
| stats[0] = _summarize(1, maxDets=self.params.maxDets[0]) | |
| stats[1] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5) | |
| stats[2] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.55) | |
| stats[3] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.60) | |
| stats[4] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.65) | |
| stats[5] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.70) | |
| stats[6] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75) | |
| stats[7] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.80) | |
| stats[8] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.85) | |
| stats[9] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.90) | |
| stats[10] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.95) | |
| stats[11] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="medium") | |
| stats[12] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="large") | |
| stats[13] = _summarize(0, maxDets=self.params.maxDets[0]) | |
| stats[14] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5) | |
| stats[15] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75) | |
| stats[16] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="medium") | |
| stats[17] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="large") | |
| return stats | |
| if not self.eval: | |
| raise Exception("Please run accumulate() first") | |
| iouType = self.params.iouType | |
| if iouType in ["segm", "bbox"]: | |
| summarize = _summarizeDets | |
| elif iouType in ["keypoints"]: | |
| summarize = _summarizeKps | |
| elif iouType in ["densepose"]: | |
| summarize = _summarizeUvs | |
| self.stats = summarize() | |
| def __str__(self): | |
| self.summarize() | |
| # ================ functions for dense pose ============================== | |
| def findAllClosestVertsUV(self, U_points, V_points, Index_points): | |
| ClosestVerts = np.ones(Index_points.shape) * -1 | |
| for i in np.arange(24): | |
| # | |
| if (i + 1) in Index_points: | |
| UVs = np.array( | |
| [U_points[Index_points == (i + 1)], V_points[Index_points == (i + 1)]] | |
| ) | |
| Current_Part_UVs = self.Part_UVs[i] | |
| Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] | |
| D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze() | |
| ClosestVerts[Index_points == (i + 1)] = Current_Part_ClosestVertInds[ | |
| np.argmin(D, axis=0) | |
| ] | |
| ClosestVertsTransformed = self.PDIST_transform[ClosestVerts.astype(int) - 1] | |
| ClosestVertsTransformed[ClosestVerts < 0] = 0 | |
| return ClosestVertsTransformed | |
| def findClosestVertsCse(self, embedding, py, px, mask, mesh_name): | |
| mesh_vertex_embeddings = self.embedder(mesh_name) | |
| pixel_embeddings = embedding[:, py, px].t().to(device="cuda") | |
| mask_vals = mask[py, px] | |
| edm = squared_euclidean_distance_matrix(pixel_embeddings, mesh_vertex_embeddings) | |
| vertex_indices = edm.argmin(dim=1).cpu() | |
| vertex_indices[mask_vals <= 0] = -1 | |
| return vertex_indices | |
| def findAllClosestVertsGT(self, gt): | |
| # | |
| I_gt = np.array(gt["dp_I"]) | |
| U_gt = np.array(gt["dp_U"]) | |
| V_gt = np.array(gt["dp_V"]) | |
| # | |
| # print(I_gt) | |
| # | |
| ClosestVertsGT = np.ones(I_gt.shape) * -1 | |
| for i in np.arange(24): | |
| if (i + 1) in I_gt: | |
| UVs = np.array([U_gt[I_gt == (i + 1)], V_gt[I_gt == (i + 1)]]) | |
| Current_Part_UVs = self.Part_UVs[i] | |
| Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] | |
| D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze() | |
| ClosestVertsGT[I_gt == (i + 1)] = Current_Part_ClosestVertInds[np.argmin(D, axis=0)] | |
| # | |
| ClosestVertsGTTransformed = self.PDIST_transform[ClosestVertsGT.astype(int) - 1] | |
| ClosestVertsGTTransformed[ClosestVertsGT < 0] = 0 | |
| return ClosestVertsGT, ClosestVertsGTTransformed | |
| def getDistancesCse(self, cVertsGT, cVerts, mesh_name): | |
| geodists_vertices = torch.ones_like(cVertsGT) * float("inf") | |
| selected = (cVertsGT >= 0) * (cVerts >= 0) | |
| mesh = create_mesh(mesh_name, "cpu") | |
| geodists_vertices[selected] = mesh.geodists[cVertsGT[selected], cVerts[selected]] | |
| return geodists_vertices.numpy() | |
| def getDistancesUV(self, cVertsGT, cVerts): | |
| # | |
| n = 27554 | |
| dists = [] | |
| for d in range(len(cVertsGT)): | |
| if cVertsGT[d] > 0: | |
| if cVerts[d] > 0: | |
| i = cVertsGT[d] - 1 | |
| j = cVerts[d] - 1 | |
| if j == i: | |
| dists.append(0) | |
| elif j > i: | |
| ccc = i | |
| i = j | |
| j = ccc | |
| i = n - i - 1 | |
| j = n - j - 1 | |
| k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1 | |
| k = (n * n - n) / 2 - k - 1 | |
| dists.append(self.Pdist_matrix[int(k)][0]) | |
| else: | |
| i = n - i - 1 | |
| j = n - j - 1 | |
| k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1 | |
| k = (n * n - n) / 2 - k - 1 | |
| dists.append(self.Pdist_matrix[int(k)][0]) | |
| else: | |
| dists.append(np.inf) | |
| return np.atleast_1d(np.array(dists).squeeze()) | |
| class Params: | |
| """ | |
| Params for coco evaluation api | |
| """ | |
| def setDetParams(self): | |
| self.imgIds = [] | |
| self.catIds = [] | |
| # np.arange causes trouble. the data point on arange is slightly larger than the true value | |
| self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) | |
| self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True) | |
| self.maxDets = [1, 10, 100] | |
| self.areaRng = [ | |
| [0**2, 1e5**2], | |
| [0**2, 32**2], | |
| [32**2, 96**2], | |
| [96**2, 1e5**2], | |
| ] | |
| self.areaRngLbl = ["all", "small", "medium", "large"] | |
| self.useCats = 1 | |
| def setKpParams(self): | |
| self.imgIds = [] | |
| self.catIds = [] | |
| # np.arange causes trouble. the data point on arange is slightly larger than the true value | |
| self.iouThrs = np.linspace(0.5, 0.95, np.round((0.95 - 0.5) / 0.05) + 1, endpoint=True) | |
| self.recThrs = np.linspace(0.0, 1.00, np.round((1.00 - 0.0) / 0.01) + 1, endpoint=True) | |
| self.maxDets = [20] | |
| self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]] | |
| self.areaRngLbl = ["all", "medium", "large"] | |
| self.useCats = 1 | |
| def setUvParams(self): | |
| self.imgIds = [] | |
| self.catIds = [] | |
| self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) | |
| self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True) | |
| self.maxDets = [20] | |
| self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]] | |
| self.areaRngLbl = ["all", "medium", "large"] | |
| self.useCats = 1 | |
| def __init__(self, iouType="segm"): | |
| if iouType == "segm" or iouType == "bbox": | |
| self.setDetParams() | |
| elif iouType == "keypoints": | |
| self.setKpParams() | |
| elif iouType == "densepose": | |
| self.setUvParams() | |
| else: | |
| raise Exception("iouType not supported") | |
| self.iouType = iouType | |
| # useSegm is deprecated | |
| self.useSegm = None | |