Commit
·
ff17aaa
1
Parent(s):
b40c0ad
Danbooru2022 Explorer v1.0
Browse files- .gitattributes +1 -0
- Utils/dbimutils.py +54 -0
- app.py +206 -0
- index/cosine_ids.npy +3 -0
- index/cosine_infos.json +1 -0
- index/cosine_knn.index +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.index filter=lfs diff=lfs merge=lfs -text
|
Utils/dbimutils.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DanBooru IMage Utility functions
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
|
| 9 |
+
if img.endswith(".gif"):
|
| 10 |
+
img = Image.open(img)
|
| 11 |
+
img = img.convert("RGB")
|
| 12 |
+
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 13 |
+
else:
|
| 14 |
+
img = cv2.imread(img, flag)
|
| 15 |
+
return img
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def smart_24bit(img):
|
| 19 |
+
if img.dtype is np.dtype(np.uint16):
|
| 20 |
+
img = (img / 257).astype(np.uint8)
|
| 21 |
+
|
| 22 |
+
if len(img.shape) == 2:
|
| 23 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 24 |
+
elif img.shape[2] == 4:
|
| 25 |
+
trans_mask = img[:, :, 3] == 0
|
| 26 |
+
img[trans_mask] = [255, 255, 255, 255]
|
| 27 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
| 28 |
+
return img
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def make_square(img, target_size):
|
| 32 |
+
old_size = img.shape[:2]
|
| 33 |
+
desired_size = max(old_size)
|
| 34 |
+
desired_size = max(desired_size, target_size)
|
| 35 |
+
|
| 36 |
+
delta_w = desired_size - old_size[1]
|
| 37 |
+
delta_h = desired_size - old_size[0]
|
| 38 |
+
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
|
| 39 |
+
left, right = delta_w // 2, delta_w - (delta_w // 2)
|
| 40 |
+
|
| 41 |
+
color = [255, 255, 255]
|
| 42 |
+
new_im = cv2.copyMakeBorder(
|
| 43 |
+
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
|
| 44 |
+
)
|
| 45 |
+
return new_im
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def smart_resize(img, size):
|
| 49 |
+
# Assumes the image has already gone through make_square
|
| 50 |
+
if img.shape[0] > size:
|
| 51 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
|
| 52 |
+
elif img.shape[0] < size:
|
| 53 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
| 54 |
+
return img
|
app.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import functools
|
| 3 |
+
import json
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import faiss
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import PIL.Image
|
| 10 |
+
import requests
|
| 11 |
+
import tensorflow as tf
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
|
| 14 |
+
from Utils import dbimutils
|
| 15 |
+
|
| 16 |
+
TITLE = "## Danbooru Explorer"
|
| 17 |
+
DESCRIPTION = """
|
| 18 |
+
Image similarity-based retrieval tool using:
|
| 19 |
+
- [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2) as feature extractor
|
| 20 |
+
- [Faiss](https://github.com/facebookresearch/faiss) and [autofaiss](https://github.com/criteo/autofaiss) for indexing
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
|
| 24 |
+
CONV_MODEL_REVISION = "v2.0"
|
| 25 |
+
CONV_FEXT_LAYER = "predictions_norm"
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def parse_args() -> argparse.Namespace:
|
| 29 |
+
parser = argparse.ArgumentParser()
|
| 30 |
+
parser.add_argument("--share", action="store_true")
|
| 31 |
+
return parser.parse_args()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def download_model(model_repo, model_revision):
|
| 35 |
+
model_files = [
|
| 36 |
+
{"filename": "saved_model.pb", "subfolder": ""},
|
| 37 |
+
{"filename": "keras_metadata.pb", "subfolder": ""},
|
| 38 |
+
{"filename": "variables.index", "subfolder": "variables"},
|
| 39 |
+
{"filename": "variables.data-00000-of-00001", "subfolder": "variables"},
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
model_file_paths = []
|
| 43 |
+
for elem in model_files:
|
| 44 |
+
model_file_paths.append(
|
| 45 |
+
Path(hf_hub_download(model_repo, revision=model_revision, **elem))
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
model_path = model_file_paths[0].parents[0]
|
| 49 |
+
return model_path
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_model(model_repo, model_revision, feature_extraction_layer):
|
| 53 |
+
model_path = download_model(model_repo, model_revision)
|
| 54 |
+
full_model = tf.keras.models.load_model(model_path)
|
| 55 |
+
model = tf.keras.models.Model(
|
| 56 |
+
full_model.inputs, full_model.get_layer(feature_extraction_layer).output
|
| 57 |
+
)
|
| 58 |
+
return model
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def danbooru_id_to_url(image_id, selected_ratings, api_username="", api_key=""):
|
| 62 |
+
headers = {"User-Agent": "image_similarity_tool"}
|
| 63 |
+
ratings_to_letters = {
|
| 64 |
+
"General": "g",
|
| 65 |
+
"Sensitive": "s",
|
| 66 |
+
"Questionable": "q",
|
| 67 |
+
"Explicit": "e",
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
acceptable_ratings = [ratings_to_letters[x] for x in selected_ratings]
|
| 71 |
+
|
| 72 |
+
image_url = f"https://danbooru.donmai.us/posts/{image_id}.json"
|
| 73 |
+
if api_username != "" and api_key != "":
|
| 74 |
+
image_url = f"{image_url}?api_key={api_key}&login={api_username}"
|
| 75 |
+
|
| 76 |
+
r = requests.get(image_url, headers=headers)
|
| 77 |
+
if r.status_code != 200:
|
| 78 |
+
return None
|
| 79 |
+
|
| 80 |
+
content = json.loads(r.text)
|
| 81 |
+
image_url = content["large_file_url"] if "large_file_url" in content else None
|
| 82 |
+
image_url = image_url if content["rating"] in acceptable_ratings else None
|
| 83 |
+
return image_url
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class SimilaritySearcher:
|
| 87 |
+
def __init__(self, model, images_ids):
|
| 88 |
+
self.knn_index = None
|
| 89 |
+
self.knn_metric = None
|
| 90 |
+
|
| 91 |
+
self.model = model
|
| 92 |
+
self.images_ids = images_ids
|
| 93 |
+
|
| 94 |
+
def change_index(self, knn_metric):
|
| 95 |
+
if knn_metric == self.knn_metric:
|
| 96 |
+
return
|
| 97 |
+
|
| 98 |
+
if knn_metric == "ip":
|
| 99 |
+
self.knn_index = faiss.read_index("index/ip_knn.index")
|
| 100 |
+
config = json.loads(open("index/ip_infos.json").read())["index_param"]
|
| 101 |
+
elif knn_metric == "cosine":
|
| 102 |
+
self.knn_index = faiss.read_index("index/cosine_knn.index")
|
| 103 |
+
config = json.loads(open("index/cosine_infos.json").read())["index_param"]
|
| 104 |
+
|
| 105 |
+
faiss.ParameterSpace().set_index_parameters(self.knn_index, config)
|
| 106 |
+
self.knn_metric = knn_metric
|
| 107 |
+
|
| 108 |
+
def predict(
|
| 109 |
+
self, image, selected_ratings, knn_metric, api_username, api_key, n_neighbours
|
| 110 |
+
):
|
| 111 |
+
_, height, width, _ = self.model.inputs[0].shape
|
| 112 |
+
|
| 113 |
+
self.change_index(knn_metric)
|
| 114 |
+
|
| 115 |
+
# Alpha to white
|
| 116 |
+
image = image.convert("RGBA")
|
| 117 |
+
new_image = PIL.Image.new("RGBA", image.size, "WHITE")
|
| 118 |
+
new_image.paste(image, mask=image)
|
| 119 |
+
image = new_image.convert("RGB")
|
| 120 |
+
image = np.asarray(image)
|
| 121 |
+
|
| 122 |
+
# PIL RGB to OpenCV BGR
|
| 123 |
+
image = image[:, :, ::-1]
|
| 124 |
+
|
| 125 |
+
image = dbimutils.make_square(image, height)
|
| 126 |
+
image = dbimutils.smart_resize(image, height)
|
| 127 |
+
image = image.astype(np.float32)
|
| 128 |
+
image = np.expand_dims(image, 0)
|
| 129 |
+
target = self.model(image).numpy()
|
| 130 |
+
|
| 131 |
+
if self.knn_metric == "cosine":
|
| 132 |
+
faiss.normalize_L2(target)
|
| 133 |
+
|
| 134 |
+
dists, indexes = self.knn_index.search(target, k=n_neighbours)
|
| 135 |
+
neighbours_ids = self.images_ids[indexes][0]
|
| 136 |
+
neighbours_ids = [int(x) for x in neighbours_ids]
|
| 137 |
+
|
| 138 |
+
captions = []
|
| 139 |
+
for image_id, dist in zip(neighbours_ids, dists[0]):
|
| 140 |
+
captions.append(f"{image_id}/{dist:.2f}")
|
| 141 |
+
|
| 142 |
+
image_urls = []
|
| 143 |
+
for image_id in neighbours_ids:
|
| 144 |
+
current_url = danbooru_id_to_url(
|
| 145 |
+
image_id, selected_ratings, api_username, api_key
|
| 146 |
+
)
|
| 147 |
+
if current_url is not None:
|
| 148 |
+
image_urls.append(current_url)
|
| 149 |
+
return list(zip(image_urls, captions))
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def main():
|
| 153 |
+
args = parse_args()
|
| 154 |
+
model = load_model(CONV_MODEL_REPO, CONV_MODEL_REVISION, CONV_FEXT_LAYER)
|
| 155 |
+
images_ids = np.load("index/cosine_ids.npy")
|
| 156 |
+
|
| 157 |
+
searcher = SimilaritySearcher(model=model, images_ids=images_ids)
|
| 158 |
+
|
| 159 |
+
with gr.Blocks() as demo:
|
| 160 |
+
gr.Markdown(TITLE)
|
| 161 |
+
gr.Markdown(DESCRIPTION)
|
| 162 |
+
|
| 163 |
+
with gr.Row():
|
| 164 |
+
input = gr.Image(type="pil", label="Input")
|
| 165 |
+
with gr.Column():
|
| 166 |
+
with gr.Row():
|
| 167 |
+
api_username = gr.Textbox(label="Danbooru API Username")
|
| 168 |
+
api_key = gr.Textbox(label="Danbooru API Key")
|
| 169 |
+
with gr.Row():
|
| 170 |
+
selected_ratings = gr.CheckboxGroup(
|
| 171 |
+
choices=["General", "Sensitive", "Questionable", "Explicit"],
|
| 172 |
+
value=["General", "Sensitive"],
|
| 173 |
+
label="Ratings",
|
| 174 |
+
)
|
| 175 |
+
selected_metric = gr.Radio(
|
| 176 |
+
choices=["cosine"],
|
| 177 |
+
value="cosine",
|
| 178 |
+
label="Metric selection",
|
| 179 |
+
visible=False,
|
| 180 |
+
)
|
| 181 |
+
n_neighbours = gr.Slider(
|
| 182 |
+
minimum=1, maximum=20, value=5, step=1, label="# of images"
|
| 183 |
+
)
|
| 184 |
+
find_btn = gr.Button("Find similar images")
|
| 185 |
+
similar_images = gr.Gallery(label="Similar images")
|
| 186 |
+
|
| 187 |
+
similar_images.style(grid=5)
|
| 188 |
+
find_btn.click(
|
| 189 |
+
fn=searcher.predict,
|
| 190 |
+
inputs=[
|
| 191 |
+
input,
|
| 192 |
+
selected_ratings,
|
| 193 |
+
selected_metric,
|
| 194 |
+
api_username,
|
| 195 |
+
api_key,
|
| 196 |
+
n_neighbours,
|
| 197 |
+
],
|
| 198 |
+
outputs=[similar_images],
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
demo.queue()
|
| 202 |
+
demo.launch(share=args.share)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
if __name__ == "__main__":
|
| 206 |
+
main()
|
index/cosine_ids.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df724519c8c1981e49d80e2430261deb4fb6edf6d9c04e134427879710747394
|
| 3 |
+
size 21830676
|
index/cosine_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"index_key": "OPQ256_1280,IVF16384_HNSW32,PQ256x8", "index_param": "nprobe=16,efSearch=32,ht=2048", "index_path": "/home/SmilingWolf/eval/index/ConvNextBV1_01_14_2023_08h37m46s_cosine_knn.index", "size in bytes": 1535843672, "avg_search_speed_ms": 10.164478485783887, "99p_search_speed_ms": 12.419190758373587, "reconstruction error %": 22.007358074188232, "nb vectors": 5457637, "vectors dimension": 1024, "compression ratio": 14.555180035276402}
|
index/cosine_knn.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a718ab8370df8b9d84002c55f945ef241e4cc3450d306c2ecd97661f51022ad
|
| 3 |
+
size 1535843672
|