Boning c
Update app.py
467b01a verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("Smilyai-labs/Smily-ultra-1")
tokenizer = AutoTokenizer.from_pretrained("Smilyai-labs/Smily-ultra-1")
# Function to generate responses from the model
def chatbot(input_text, chat_history=[]):
# Encode the new user input, add the chat history as context
new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
# Concatenate the chat history and the new user input
bot_input_ids = new_user_input_ids
for history in chat_history:
bot_input_ids = torch.cat([history['input_ids'], bot_input_ids], dim=-1)
# Generate a response from the model
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id,
temperature=0.7, top_k=50, top_p=0.95, do_sample=True,
eos_token_id=tokenizer.eos_token_id)
# Decode the generated response
bot_response = tokenizer.decode(chat_history_ids[0], skip_special_tokens=True)
# Update the chat history
chat_history.append({'input_ids': bot_input_ids, 'response': bot_response})
return bot_response, chat_history
# Gradio interface with a more chatbot-like layout
with gr.Blocks() as demo:
with gr.Column():
# Create a text box to display conversation history
chatbot_output = gr.Chatbot(label="Chatbot")
# Create a text box for user input at the bottom
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", show_label=False)
# Create a submit button to trigger the chatbot function
submit_button = gr.Button("Send")
# Link the button to the chatbot function
submit_button.click(chatbot, inputs=[user_input, chatbot_output], outputs=[chatbot_output, chatbot_output])
# Launch the Gradio interface
demo.launch()