File size: 7,388 Bytes
5b1d214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from torch_geometric.datasets import MovieLens100K
from sklearn.model_selection import train_test_split
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
from torch_geometric.nn import GCNConv, GATConv
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', filename='metrics.log')
class GNN(torch.nn.Module):
def __init__(self, model_type, in_channels, hidden_channels, out_channels):
super(GNN, self).__init__()
self.model_type = model_type
self.fc1 = nn.Linear(user_features.shape[1], in_channels)
self.fc2 = nn.Linear(movie_features.shape[1], in_channels)
if model_type == 'GCN':
self.conv1 = GCNConv(in_channels, hidden_channels)
self.conv2 = GCNConv(hidden_channels, out_channels)
self.bn1= torch.nn.BatchNorm1d(hidden_channels)
elif model_type == 'GAT':
self.conv1 = GATConv(in_channels, hidden_channels, heads=2, concat=True)
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=2, concat=True)
self.bn1= torch.nn.BatchNorm1d(hidden_channels*2)
def forward(self, x, y, edge_index):
x = self.fc1(x)
y = self.fc2(y)
z = torch.cat((x, y), dim=0)
z = F.relu(self.bn1(self.conv1(z, edge_index)))
z = self.conv2(z, edge_index)
return z
# genres = {
# 0 :['Action', 'Adventure', 'Thriller'], # Action-packed and exciting
# 1: ['Animation', 'Children', 'Fantasy'], # Family-friendly and imaginative
# 2: ['Comedy', 'Musical', 'Romance'], # Lighthearted and feel-good
# 3: ['Crime', 'Mystery', 'Film-Noir'], # Dark, investigative, and gritty
# 4: ['Documentary', 'Drama'], # Realistic and serious storytelling
# 5: ['Horror', 'Sci-Fi'], # Fearful and futuristic
# 6: ['War', 'Western'] # Historical and culturally specific
# }
gtypes = ['Action', 'Adventure', 'Animation', 'Children', 'Comedy',
'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror',
'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western']
genres = {ix: i for ix, i in enumerate(gtypes)}
test_users = [327, 388, 404, 449, 707, 310, 605, 832, 850, 302, 523, 626, 774, 853, 522, 542, 680, 703, 929, 254, 526, 588, 884, 210, 275, 497, 507, 598, 825, 937, 311, 380, 448, 541, 885, 938, 409, 429, 433, 451, 534, 551, 585, 896, 33, 109, 120, 215, 261, 412, 425, 559, 615, 617, 829, 49, 78, 137, 192, 198, 281, 305, 394, 528, 669]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
file_path = 'u.item'
df = pd.read_csv(file_path, sep='|', header=None, encoding='latin-1')
last_19_cols = df.columns[-19:]
genre_columns = [
'Unknown', 'Action', 'Adventure', 'Animation', 'Children', 'Comedy',
'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror',
'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'
]
df.rename(columns=dict(zip(last_19_cols, genre_columns)), inplace=True)
df.rename(columns = {1: "info"}, inplace=True)
df['Year'] = df['info'].str.extract(r'\((\d{4})\)')
id_movie_map = df["info"].to_dict()
movie_lens = MovieLens100K('./data/movie_lens')[0]
movie_features = movie_lens["movie"]["x"]
user_features = movie_lens["user"]["x"]
data = movie_lens[("user", "rates", "movie")]
mask = data["rating"] >= 3
data_edge_index = data["edge_index"][:, mask]
data_edge_label = data["rating"][mask]
user_num_nodes = user_features.shape[0]
train_nodes, testing_nodes = train_test_split(range(user_num_nodes), test_size=0.2, random_state=42)
val_nodes, test_nodes = testing_nodes[:len(testing_nodes)//2], testing_nodes[len(testing_nodes)//2: ]
Y = data_edge_index[0]
val_mask = torch.isin(Y, torch.tensor(val_nodes))
val_edge_index = data_edge_index[:, val_mask]
test_mask = torch.isin(Y, torch.tensor(test_nodes))
test_edge_index = data_edge_index[:, test_mask]
user_features = user_features.to(device)
movie_features = movie_features.to(device)
val_edge_index = val_edge_index.to(device)
test_edge_index = test_edge_index.to(device)
val_edge_index[1] += (user_features.shape[0])
test_edge_index[1] += (user_features.shape[0])
model_type = "GCN"
model = GNN(model_type, in_channels= 32, hidden_channels=128, out_channels=64)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)
model=model.to(device)
model.load_state_dict(torch.load('model_GCN.pth', map_location=torch.device('cpu')))
model.eval()
with torch.no_grad():
embeddings = model(user_features, movie_features, test_edge_index)
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
users = test_edge_index[0].unique()
def display_scores(top_k, test_edges_q_indices):
p_10 = sum(1 for i in top_k if i in test_edges_q_indices)
# p_5 = sum(1 for i in top_k[:5] if i in test_edges_q_indices)
# p_1 = 1 if top_k[0] in test_edges_q_indices else 0
r_10 = p_10/len(test_edges_q_indices)
for rank, node in enumerate(top_k):
if node in test_edges_q_indices:
mrr = 1 / (rank + 1)
break
dcg = 0.0
for rank, node in enumerate(top_k, start=1):
if node in test_edges_q_indices:
dcg += 1 / np.log2(rank + 1)
ideal_relevant = min(len(test_edges_q_indices), 10)
idcg = sum(1 / np.log2(rank + 1) for rank in range(1, ideal_relevant + 1))
ndcg = dcg / idcg if idcg > 0 else 0.0
logging.info(f"Precision@10: {p_10}, Recall@10: {r_10}, MRR: {mrr}, nDCG: {ndcg}")
print(f"Precision@10: {p_10}, Recall@10: {r_10}, MRR: {mrr}, nDCG: {ndcg}")
def get_genres_movies_for_user(user_id):
curr_node = torch.tensor(user_id)
self_emb = embeddings[curr_node]
itm = embeddings[user_features.shape[0]:]
similarities = cos(self_emb, itm)
sorted_indices = torch.argsort(similarities, descending=True)
sorted_indices = [i + user_features.shape[0] for i in sorted_indices]
test_edges_q_indices = test_edge_index[1][test_edge_index[0] == curr_node]
top_k = sorted_indices[:10]
display_scores(top_k, test_edges_q_indices)
pred_mids = [(i - user_features.shape[0]).item() for i in top_k]
actual_mids = [(i - user_features.shape[0]).item() for i in test_edges_q_indices]
# liked_movies = [id_movie_map[i] for i in actual_mids]
# pred_movies = [id_movie_map[i] for i in pred_mids]
user_genre = {i:0 for i in range(len(genres))}
for amid in actual_mids:
for gr_id, g in genres.items():
# for g in grp:
if df.iloc[amid][g] == 1:
user_genre[gr_id] += 1
sort_user_genre = sorted(user_genre.items(), key=lambda item: item[1], reverse=True)
sort_user_genre = [i for i, _ in sort_user_genre]
top_genre_user = [genres[sort_user_genre[0]], genres[sort_user_genre[1]], genres[sort_user_genre[2]]]
our_movies = []
for pmid in pred_mids:
mname = df.iloc[pmid]["info"]
movie = {}
movie["title"] = mname
tmp = []
for gr_id, g in genres.items():
# for g in grp:
if df.iloc[pmid][g] == 1:
tmp.append(g)
movie["genres"] = tmp
our_movies.append(movie)
return top_genre_user, our_movies |