File size: 7,388 Bytes
5b1d214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from torch_geometric.datasets import MovieLens100K
from sklearn.model_selection import train_test_split
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
from torch_geometric.nn import GCNConv, GATConv
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', filename='metrics.log')

class GNN(torch.nn.Module):
    def __init__(self, model_type, in_channels, hidden_channels, out_channels):
        super(GNN, self).__init__()
        self.model_type = model_type
        self.fc1 = nn.Linear(user_features.shape[1], in_channels)
        self.fc2 = nn.Linear(movie_features.shape[1], in_channels)
        if model_type == 'GCN':
            self.conv1 = GCNConv(in_channels, hidden_channels)
            self.conv2 = GCNConv(hidden_channels, out_channels)
            self.bn1= torch.nn.BatchNorm1d(hidden_channels)
        elif model_type == 'GAT':
            self.conv1 = GATConv(in_channels, hidden_channels, heads=2, concat=True)
            self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=2, concat=True)
            self.bn1= torch.nn.BatchNorm1d(hidden_channels*2)

    def forward(self, x, y, edge_index):
        x = self.fc1(x)
        y = self.fc2(y)
        z = torch.cat((x, y), dim=0)
        z = F.relu(self.bn1(self.conv1(z, edge_index)))
        z = self.conv2(z, edge_index)
        return z

# genres = {
#     0 :['Action', 'Adventure', 'Thriller'],  # Action-packed and exciting
#     1: ['Animation', 'Children', 'Fantasy'],  # Family-friendly and imaginative
#     2: ['Comedy', 'Musical', 'Romance'],  # Lighthearted and feel-good
#     3: ['Crime', 'Mystery', 'Film-Noir'],  # Dark, investigative, and gritty
#     4: ['Documentary', 'Drama'],  # Realistic and serious storytelling
#     5: ['Horror', 'Sci-Fi'],  # Fearful and futuristic
#     6: ['War', 'Western']  # Historical and culturally specific
# }
gtypes = ['Action', 'Adventure', 'Animation', 'Children', 'Comedy',
    'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror',
    'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western']
genres = {ix: i for ix, i in enumerate(gtypes)}

test_users = [327, 388, 404, 449, 707, 310, 605, 832, 850, 302, 523, 626, 774, 853, 522, 542, 680, 703, 929, 254, 526, 588, 884, 210, 275, 497, 507, 598, 825, 937, 311, 380, 448, 541, 885, 938, 409, 429, 433, 451, 534, 551, 585, 896, 33, 109, 120, 215, 261, 412, 425, 559, 615, 617, 829, 49, 78, 137, 192, 198, 281, 305, 394, 528, 669]

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

file_path = 'u.item'
df = pd.read_csv(file_path, sep='|', header=None, encoding='latin-1')
last_19_cols = df.columns[-19:]
genre_columns = [
    'Unknown', 'Action', 'Adventure', 'Animation', 'Children', 'Comedy',
    'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror',
    'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'
]

df.rename(columns=dict(zip(last_19_cols, genre_columns)), inplace=True)
df.rename(columns = {1: "info"}, inplace=True)
df['Year'] = df['info'].str.extract(r'\((\d{4})\)')
id_movie_map = df["info"].to_dict()

movie_lens = MovieLens100K('./data/movie_lens')[0]
movie_features = movie_lens["movie"]["x"]
user_features = movie_lens["user"]["x"]
data = movie_lens[("user", "rates", "movie")]
mask = data["rating"] >= 3
data_edge_index = data["edge_index"][:, mask]
data_edge_label = data["rating"][mask]

user_num_nodes = user_features.shape[0]
train_nodes, testing_nodes = train_test_split(range(user_num_nodes), test_size=0.2, random_state=42)
val_nodes, test_nodes = testing_nodes[:len(testing_nodes)//2], testing_nodes[len(testing_nodes)//2: ]

Y = data_edge_index[0]
val_mask = torch.isin(Y, torch.tensor(val_nodes))
val_edge_index = data_edge_index[:, val_mask]
test_mask = torch.isin(Y, torch.tensor(test_nodes))
test_edge_index = data_edge_index[:, test_mask]

user_features = user_features.to(device)
movie_features = movie_features.to(device)

val_edge_index = val_edge_index.to(device)
test_edge_index = test_edge_index.to(device)

val_edge_index[1] += (user_features.shape[0])
test_edge_index[1] += (user_features.shape[0])
    
model_type = "GCN"
model = GNN(model_type, in_channels= 32, hidden_channels=128, out_channels=64)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)
model=model.to(device)

model.load_state_dict(torch.load('model_GCN.pth', map_location=torch.device('cpu')))

model.eval()
with torch.no_grad():
  embeddings = model(user_features, movie_features, test_edge_index)

cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)

users = test_edge_index[0].unique()

def display_scores(top_k, test_edges_q_indices):
    p_10 =  sum(1 for i in top_k if i in test_edges_q_indices)
    # p_5 =  sum(1 for i in top_k[:5] if i in test_edges_q_indices)
    # p_1 =  1 if top_k[0] in test_edges_q_indices else 0
    r_10 = p_10/len(test_edges_q_indices)
    for rank, node in enumerate(top_k):
        if node in test_edges_q_indices:
            mrr = 1 / (rank + 1)
            break
    dcg = 0.0
    for rank, node in enumerate(top_k, start=1):
        if node in test_edges_q_indices:
            dcg += 1 / np.log2(rank + 1)
    ideal_relevant = min(len(test_edges_q_indices), 10)
    idcg = sum(1 / np.log2(rank + 1) for rank in range(1, ideal_relevant + 1))
    ndcg = dcg / idcg if idcg > 0 else 0.0
    logging.info(f"Precision@10: {p_10}, Recall@10: {r_10}, MRR: {mrr}, nDCG: {ndcg}")
    print(f"Precision@10: {p_10}, Recall@10: {r_10}, MRR: {mrr}, nDCG: {ndcg}")

def get_genres_movies_for_user(user_id):
    curr_node = torch.tensor(user_id)
    self_emb = embeddings[curr_node]
    itm = embeddings[user_features.shape[0]:]
    similarities = cos(self_emb, itm)
    sorted_indices = torch.argsort(similarities, descending=True)
    sorted_indices = [i + user_features.shape[0] for i in sorted_indices]
    test_edges_q_indices = test_edge_index[1][test_edge_index[0] == curr_node]
    top_k = sorted_indices[:10]

    display_scores(top_k, test_edges_q_indices)
    
    pred_mids = [(i - user_features.shape[0]).item()  for i in top_k]
    actual_mids = [(i - user_features.shape[0]).item()  for i in test_edges_q_indices]
    # liked_movies = [id_movie_map[i] for i in actual_mids]
    # pred_movies = [id_movie_map[i] for i in pred_mids]

    user_genre = {i:0 for i in range(len(genres))}
    for amid in actual_mids:
        for gr_id, g in genres.items():
            # for g in grp:
            if df.iloc[amid][g] == 1:
                user_genre[gr_id] += 1
    sort_user_genre = sorted(user_genre.items(), key=lambda item: item[1], reverse=True)
    sort_user_genre = [i for i, _ in sort_user_genre]
    top_genre_user = [genres[sort_user_genre[0]], genres[sort_user_genre[1]], genres[sort_user_genre[2]]]

    our_movies = []
    for pmid in pred_mids:
        mname = df.iloc[pmid]["info"]
        movie = {}
        movie["title"] = mname
        tmp = []
        for gr_id, g in genres.items():
            # for g in grp:
            if df.iloc[pmid][g] == 1:
                tmp.append(g)
        movie["genres"] = tmp
        our_movies.append(movie)

    return top_genre_user, our_movies