Spaces:
Sleeping
Sleeping
File size: 15,095 Bytes
2300b9a 1078d41 3e1ff70 1078d41 3e1ff70 1078d41 3e1ff70 1078d41 2300b9a 1078d41 c80f57a 1078d41 c80f57a 1078d41 c80f57a 3e1ff70 1078d41 3e1ff70 1078d41 3e1ff70 1078d41 765f19b 2300b9a 765f19b 2300b9a c80f57a 765f19b 1078d41 765f19b c80f57a 1078d41 c80f57a 1078d41 c80f57a 1078d41 765f19b c80f57a 1078d41 c80f57a 765f19b 1078d41 c80f57a 765f19b c80f57a 1078d41 c80f57a 1078d41 765f19b 1078d41 3e1ff70 c80f57a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import gradio as gr
import json
import time
import os
from typing import List, Dict, Any, Optional
import random
# Import Hugging Face inference API
from huggingface_hub import InferenceClient
# API key validation
def validate_api_key(api_key: str) -> bool:
"""Validate the API key against the stored secret"""
expected_key = os.environ.get("SOACTI_API_KEY")
if not expected_key:
print("WARNING: SOACTI_API_KEY not set in environment variables")
return False
return api_key == expected_key
# AI Quiz generation with Hugging Face models
class AIQuizGenerator:
def __init__(self):
self.api_key = os.environ.get("HUGGINGFACE_API_KEY")
if not self.api_key:
print("WARNING: HUGGINGFACE_API_KEY not set in environment variables")
# Use a more capable model for better quiz generation
self.default_model = "microsoft/DialoGPT-medium"
self.fallback_model = "google/flan-t5-base"
# Initialize the client
self.client = InferenceClient(token=self.api_key) if self.api_key else None
def generate_quiz(self, tema: str, antall: int = 3, språk: str = "no") -> List[Dict[str, Any]]:
"""Generate quiz questions using AI - NO RESTRICTIONS ON TOPIC"""
if not self.client:
print("No Hugging Face API key available, generating basic questions")
return self._generate_basic_questions(tema, antall)
try:
# Build flexible prompt that works with ANY topic
prompt = self._build_flexible_prompt(tema, antall, språk)
# Try primary model first
start_time = time.time()
try:
response = self.client.text_generation(
prompt,
model=self.default_model,
max_new_tokens=1500,
temperature=0.8,
repetition_penalty=1.1,
do_sample=True
)
except:
# Fallback to more reliable model
response = self.client.text_generation(
prompt,
model=self.fallback_model,
max_new_tokens=1200,
temperature=0.7,
repetition_penalty=1.2,
)
generation_time = time.time() - start_time
print(f"AI response received in {generation_time:.2f}s for topic: {tema}")
print(f"Response preview: {response[:300]}...")
# Parse the response into questions
questions = self._parse_flexible_response(response, tema, antall)
# If we couldn't parse enough questions, generate more basic ones
if len(questions) < antall:
additional = self._generate_basic_questions(tema, antall - len(questions))
questions.extend(additional)
return questions[:antall]
except Exception as e:
print(f"Error generating quiz with AI: {str(e)}")
return self._generate_basic_questions(tema, antall)
def _build_flexible_prompt(self, tema: str, antall: int, språk: str) -> str:
"""Build a flexible prompt that works with ANY topic"""
language = "norsk" if språk == "no" else "English"
return f"""Create {antall} quiz questions about "{tema}" in {language}.
IMPORTANT: Generate questions about ANY topic the user requests - there are NO restrictions.
Whether it's about science, history, pop culture, technology, sports, entertainment, food, travel, or anything else - create relevant questions.
Format each question EXACTLY like this:
Q1: [Clear question about {tema}]
A) [First option]
B) [Second option]
C) [Third option]
D) [Fourth option]
CORRECT: [A, B, C, or D]
EXPLANATION: [Brief explanation why this is correct]
Q2: [Second question about {tema}]
A) [First option]
B) [Second option]
C) [Third option]
D) [Fourth option]
CORRECT: [A, B, C, or D]
EXPLANATION: [Brief explanation]
Continue for all {antall} questions about "{tema}".
Make the questions interesting and educational. Use your knowledge to create accurate, relevant questions about this topic.
Topic: {tema}
Generate {antall} questions now:
"""
def _parse_flexible_response(self, response: str, tema: str, expected_count: int) -> List[Dict[str, Any]]:
"""Parse AI response with flexible parsing for any topic"""
questions = []
# Split response into potential question blocks
lines = response.split('\n')
current_question = {}
current_options = []
for line in lines:
line = line.strip()
if not line:
continue
# Look for question patterns
if line.startswith(('Q1:', 'Q2:', 'Q3:', 'Q4:', 'Q5:')) or 'SPØRSMÅL:' in line.upper():
# Save previous question if complete
if self._is_complete_question(current_question, current_options):
current_question["alternativer"] = current_options
questions.append(current_question)
# Start new question
question_text = line.split(':', 1)[1].strip() if ':' in line else line
current_question = {"spørsmål": question_text}
current_options = []
elif line.startswith(('A)', 'B)', 'C)', 'D)')):
option = line[2:].strip()
if option:
current_options.append(option)
elif 'CORRECT:' in line.upper() or 'KORREKT:' in line.upper():
correct_part = line.upper().split('CORRECT:')[-1].split('KORREKT:')[-1].strip()
if correct_part and correct_part[0] in ['A', 'B', 'C', 'D']:
current_question["korrekt_svar"] = ['A', 'B', 'C', 'D'].index(correct_part[0])
elif 'EXPLANATION:' in line.upper() or 'FORKLARING:' in line.upper():
explanation = line.split(':')[1].strip() if ':' in line else line
current_question["forklaring"] = explanation
# Add the last question if complete
if self._is_complete_question(current_question, current_options):
current_question["alternativer"] = current_options
questions.append(current_question)
return questions
def _is_complete_question(self, question: Dict, options: List) -> bool:
"""Check if a question is complete"""
return (
"spørsmål" in question and
len(options) >= 3 and # At least 3 options
"korrekt_svar" in question and
question["korrekt_svar"] < len(options)
)
def _generate_basic_questions(self, tema: str, antall: int) -> List[Dict[str, Any]]:
"""Generate basic questions when AI fails - works with ANY topic"""
questions = []
# Generate generic but relevant questions for any topic
question_templates = [
f"Hva er det mest kjente ved {tema}?",
f"Hvilket år er viktig i historien til {tema}?",
f"Hvor finner man vanligvis {tema}?",
f"Hva karakteriserer {tema}?",
f"Hvilken betydning har {tema}?"
]
for i in range(min(antall, len(question_templates))):
questions.append({
"spørsmål": question_templates[i],
"alternativer": [
f"Alternativ A om {tema}",
f"Alternativ B om {tema}",
f"Alternativ C om {tema}",
f"Alternativ D om {tema}"
],
"korrekt_svar": 0, # Always A for simplicity
"forklaring": f"Dette er et generert spørsmål om {tema}. For mer nøyaktige spørsmål, prøv igjen - AI-systemet lærer kontinuerlig."
})
return questions
# Initialize the AI generator
quiz_generator = AIQuizGenerator()
# API endpoint for quiz generation - NO TOPIC RESTRICTIONS
def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
type: str = "sted", vanskelighetsgrad: int = 3,
api_key: str = None) -> Dict[str, Any]:
"""API endpoint for quiz generation - ACCEPTS ANY TOPIC"""
# Validate API key
if not validate_api_key(api_key):
return {
"success": False,
"message": "Ugyldig API-nøkkel",
"questions": []
}
# NO TOPIC FILTERING - Accept absolutely anything
if not tema or len(tema.strip()) < 2:
return {
"success": False,
"message": "Vennligst oppgi et tema (minimum 2 tegn)",
"questions": []
}
try:
# Generate questions with AI - NO RESTRICTIONS
start_time = time.time()
questions = quiz_generator.generate_quiz(tema.strip(), antall_spørsmål, språk)
generation_time = time.time() - start_time
return {
"success": True,
"questions": questions,
"metadata": {
"generation_time": round(generation_time, 2),
"model_used": quiz_generator.default_model,
"topic": tema,
"unrestricted": True # Flag to show no restrictions
},
"message": f"Genererte {len(questions)} spørsmål om '{tema}' - ingen begrensninger!"
}
except Exception as e:
print(f"Error in generate_quiz_api: {str(e)}")
return {
"success": False,
"message": f"Feil ved generering av quiz: {str(e)}",
"questions": []
}
# Gradio interface - emphasize NO RESTRICTIONS
def generate_quiz_gradio(tema, antall, api_key=None):
"""Gradio wrapper - accepts ANY topic"""
if api_key and not validate_api_key(api_key):
return "❌ **Ugyldig API-nøkkel**"
if not tema or len(tema.strip()) < 2:
return "❌ **Vennligst skriv inn et tema**"
try:
result = generate_quiz_api(tema, "no", antall, "sted", 3, api_key)
if not result["success"]:
return f"❌ **Feil:** {result['message']}"
questions = result["questions"]
model = result["metadata"]["model_used"]
time_taken = result["metadata"]["generation_time"]
output = f"✅ **Genererte {len(questions)} spørsmål om '{tema}'**\n\n"
output += f"🤖 **Modell:** {model}\n"
output += f"⏱️ **Tid:** {time_taken}s\n"
output += f"🔓 **Ingen begrensninger** - alle temaer er tillatt!\n\n"
for i, q in enumerate(questions, 1):
output += f"📝 **Spørsmål {i}:** {q['spørsmål']}\n"
for j, alt in enumerate(q['alternativer']):
marker = "✅" if j == q['korrekt_svar'] else "❌"
output += f" {chr(65+j)}) {alt} {marker}\n"
output += f"💡 **Forklaring:** {q['forklaring']}\n\n"
return output
except Exception as e:
return f"❌ **Feil:** {str(e)}"
# Health check endpoint
def health_check():
return {"status": "healthy", "timestamp": time.time(), "unrestricted": True}
# Gradio interface - emphasize freedom
with gr.Blocks(title="SoActi AI Quiz API - Ubegrenset") as demo:
gr.Markdown("# 🧠 SoActi AI Quiz API - Ubegrenset")
gr.Markdown("**🔓 Lag quiz om ABSOLUTT HVASOM HELST - ingen begrensninger!**")
with gr.Row():
with gr.Column():
tema_input = gr.Textbox(
label="Tema (skriv hva som helst!)",
value="",
placeholder="Fotball, Harry Potter, Kvantfysikk, Baking, TikTok, Dinosaurer, Programmering, K-pop, Filosofi, Gaming..."
)
antall_input = gr.Slider(
minimum=1,
maximum=5,
step=1,
label="Antall spørsmål",
value=3
)
api_key_input = gr.Textbox(
label="API-nøkkel (for testing)",
placeholder="Skriv inn API-nøkkel...",
type="password"
)
generate_btn = gr.Button("🚀 Generer Quiz om HVASOM HELST!", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Generert Quiz",
lines=20,
placeholder="Skriv inn HVILKET SOM HELST tema og klikk 'Generer Quiz'!\n\nEksempler:\n- Marvel filmer\n- Norsk rap\n- Kryptovaluta\n- Yoga\n- Sushi\n- Elon Musk\n- Klimaendringer\n- Netflix serier\n- Fotografi\n- Skateboard"
)
generate_btn.click(
fn=generate_quiz_gradio,
inputs=[tema_input, antall_input, api_key_input],
outputs=output
)
gr.Markdown("## 🔗 API for SoActi")
gr.Markdown("`POST https://Soacti-soacti-ai-quiz-api.hf.space/generate-quiz`")
gr.Markdown("**🔓 Ingen begrensninger - brukere kan spørre om hva som helst!**")
# FastAPI setup with CORS for unrestricted access
from fastapi import FastAPI, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
app = FastAPI(title="SoActi Quiz API - Ubegrenset")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class QuizRequest(BaseModel):
tema: str # NO restrictions on what this can be
språk: str = "no"
antall_spørsmål: int = 3
type: str = "sted"
vanskelighetsgrad: int = 3
async def get_api_key(authorization: str = Header(None)):
if not authorization:
raise HTTPException(status_code=401, detail="API key missing")
parts = authorization.split()
if len(parts) != 2 or parts[0].lower() != "bearer":
raise HTTPException(status_code=401, detail="Invalid authorization header")
return parts[1]
@app.post("/generate-quiz")
async def api_generate_quiz(request: QuizRequest, api_key: str = Depends(get_api_key)):
"""Generate quiz about ANY topic - no restrictions"""
result = generate_quiz_api(
request.tema, # Accept ANY topic
request.språk,
request.antall_spørsmål,
request.type,
request.vanskelighetsgrad,
api_key
)
if not result["success"]:
raise HTTPException(status_code=400, detail=result["message"])
return result
@app.get("/health")
async def api_health():
return health_check()
# Mount Gradio
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|