File size: 5,994 Bytes
17e49b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import aiohttp
import asyncio
import json
import logging
from typing import List, Dict, Any
from fallback_questions import FallbackQuestions

logger = logging.getLogger(__name__)

class QuizGenerator:
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.model_used = "fallback"
        self.generation_method = "fallback"
        self.fallback = FallbackQuestions()
        
        # Modell-konfigurasjon
        self.models = {
            "norwegian": "NbAiLab/nb-gpt-j-6B",
            "english": "meta-llama/Llama-2-70b-chat-hf",
            "fallback": "google/flan-t5-small"
        }
    
    async def generate_quiz(self, request) -> List[Dict[str, Any]]:
        """Hovedmetode for quiz-generering"""
        logger.info(f"Starter quiz-generering: {request.tema} ({request.språk})")
        
        # Prøv AI-generering først
        if self.api_key:
            try:
                questions = await self._try_ai_generation(request)
                if questions:
                    logger.info(f"AI-generering suksess: {len(questions)} spørsmål")
                    return questions
            except Exception as e:
                logger.warning(f"AI-generering feilet: {e}")
        
        # Fallback til forhåndsdefinerte spørsmål
        logger.info("Bruker fallback-spørsmål")
        self.model_used = "fallback"
        self.generation_method = "predefined"
        
        return self.fallback.get_questions(
            tema=request.tema,
            språk=request.språk,
            antall=request.antall_spørsmål,
            type=request.type,
            vanskelighet=request.vanskelighetsgrad
        )
    
    async def _try_ai_generation(self, request) -> List[Dict[str, Any]]:
        """Prøv AI-generering med forskjellige modeller"""
        
        # Velg modell basert på språk
        if request.språk == "no":
            model = self.models["norwegian"]
        else:
            model = self.models["english"]
        
        logger.info(f"Prøver AI-modell: {model}")
        
        try:
            questions = await self._call_huggingface_api(model, request)
            if questions:
                self.model_used = model
                self.generation_method = "ai"
                return questions
        except Exception as e:
            logger.warning(f"Modell {model} feilet: {e}")
        
        # Prøv fallback-modell
        try:
            logger.info(f"Prøver fallback-modell: {self.models['fallback']}")
            questions = await self._call_huggingface_api(self.models["fallback"], request)
            if questions:
                self.model_used = self.models["fallback"]
                self.generation_method = "ai_fallback"
                return questions
        except Exception as e:
            logger.warning(f"Fallback-modell feilet: {e}")
        
        return []
    
    async def _call_huggingface_api(self, model: str, request) -> List[Dict[str, Any]]:
        """Kall Hugging Face Inference API"""
        
        prompt = self._build_prompt(request, model)
        
        async with aiohttp.ClientSession() as session:
            async with session.post(
                f"https://api-inference.huggingface.co/models/{model}",
                headers={
                    "Authorization": f"Bearer {self.api_key}",
                    "Content-Type": "application/json"
                },
                json={
                    "inputs": prompt,
                    "parameters": {
                        "max_new_tokens": 1500,
                        "temperature": 0.7,
                        "do_sample": True,
                        "top_p": 0.9
                    }
                },
                timeout=aiohttp.ClientTimeout(total=30)
            ) as response:
                
                if response.status != 200:
                    error_text = await response.text()
                    raise Exception(f"HTTP {response.status}: {error_text}")
                
                data = await response.json()
                
                # Parse response
                if isinstance(data, list) and data:
                    generated_text = data[0].get("generated_text", "")
                elif isinstance(data, dict):
                    generated_text = data.get("generated_text", "")
                else:
                    raise Exception("Uventet response-format")
                
                # Parse quiz fra generert tekst
                questions = self._parse_quiz_response(generated_text, request.antall_spørsmål)
                
                if not questions:
                    raise Exception("Kunne ikke parse quiz-spørsmål fra AI-respons")
                
                return questions
    
    def _build_prompt(self, request, model: str) -> str:
        """Bygg prompt for AI-modell"""
        
        if request.språk == "no":
            return f"""Generer {request.antall_spørsmål} quiz-spørsmål på norsk om temaet "{request.tema}".

Format for hvert spørsmål:
SPØRSMÅL: [spørsmålstekst]
A) [alternativ 1]
B) [alternativ 2]
C) [alternativ 3]
D) [alternativ 4]
KORREKT: [A, B, C eller D]
FORKLARING: [kort forklaring]

---

Tema: {request.tema}
Type: {request.type}
Vanskelighetsgrad: {request.vanskelighetsgrad}/5

Start generering:"""
        else:
            return f"""Generate {request.antall_spørsmål} quiz questions in English about "{request.tema}".

Format each question exactly like this:
QUESTION: [question text]
A) [option 1]
B) [option 2]
C) [option 3]
D) [option 4]
CORRECT: [A, B, C, or D]
EXPLANATION: [brief explanation]

---

Topic: {request.tema}
Type: {request.type}
Difficulty: {request.vanskelighetsgrad}/5

Start generating:"""
    
    def _parse_quiz_response(self, response: str, expected_count: int) -> List[Dict[str, Any]]:
        """Parse AI-respons til quiz-spørsmål"""
        questions = []
        
        # Spli