Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,7 @@ import time
|
|
4 |
import os
|
5 |
from typing import List, Dict, Any, Optional
|
6 |
import random
|
7 |
-
|
8 |
-
# Import Hugging Face inference API
|
9 |
-
from huggingface_hub import InferenceClient
|
10 |
|
11 |
# API key validation
|
12 |
def validate_api_key(api_key: str) -> bool:
|
@@ -17,199 +15,269 @@ def validate_api_key(api_key: str) -> bool:
|
|
17 |
return False
|
18 |
return api_key == expected_key
|
19 |
|
20 |
-
# AI Quiz generation
|
21 |
class AIQuizGenerator:
|
22 |
def __init__(self):
|
23 |
self.api_key = os.environ.get("HUGGINGFACE_API_KEY")
|
24 |
-
|
25 |
-
print("WARNING: HUGGINGFACE_API_KEY not set in environment variables")
|
26 |
|
27 |
-
#
|
28 |
-
self.
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
self.client = InferenceClient(token=self.api_key) if self.api_key else None
|
33 |
|
34 |
def generate_quiz(self, tema: str, antall: int = 3, språk: str = "no") -> List[Dict[str, Any]]:
|
35 |
-
"""Generate quiz questions using
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Try primary model first
|
45 |
-
start_time = time.time()
|
46 |
try:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
model=self.fallback_model,
|
60 |
-
max_new_tokens=1200,
|
61 |
-
temperature=0.7,
|
62 |
-
repetition_penalty=1.2,
|
63 |
-
)
|
64 |
-
|
65 |
-
generation_time = time.time() - start_time
|
66 |
-
|
67 |
-
print(f"AI response received in {generation_time:.2f}s for topic: {tema}")
|
68 |
-
print(f"Response preview: {response[:300]}...")
|
69 |
-
|
70 |
-
# Parse the response into questions
|
71 |
-
questions = self._parse_flexible_response(response, tema, antall)
|
72 |
-
|
73 |
-
# If we couldn't parse enough questions, generate more basic ones
|
74 |
-
if len(questions) < antall:
|
75 |
-
additional = self._generate_basic_questions(tema, antall - len(questions))
|
76 |
-
questions.extend(additional)
|
77 |
-
|
78 |
-
return questions[:antall]
|
79 |
-
|
80 |
-
except Exception as e:
|
81 |
-
print(f"Error generating quiz with AI: {str(e)}")
|
82 |
-
return self._generate_basic_questions(tema, antall)
|
83 |
|
84 |
-
def
|
85 |
-
"""
|
86 |
-
language = "norsk" if språk == "no" else "English"
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
|
111 |
-
|
|
|
|
|
112 |
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
Generate {antall} questions now:
|
117 |
-
"""
|
118 |
|
119 |
-
def
|
120 |
-
"""Parse AI response
|
121 |
questions = []
|
122 |
|
123 |
-
# Split
|
124 |
-
|
125 |
-
current_question = {}
|
126 |
-
current_options = []
|
127 |
|
128 |
-
for
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
continue
|
132 |
-
|
133 |
-
|
134 |
-
if line.startswith(('Q1:', 'Q2:', 'Q3:', 'Q4:', 'Q5:')) or 'SPØRSMÅL:' in line.upper():
|
135 |
-
# Save previous question if complete
|
136 |
-
if self._is_complete_question(current_question, current_options):
|
137 |
-
current_question["alternativer"] = current_options
|
138 |
-
questions.append(current_question)
|
139 |
-
|
140 |
-
# Start new question
|
141 |
-
question_text = line.split(':', 1)[1].strip() if ':' in line else line
|
142 |
-
current_question = {"spørsmål": question_text}
|
143 |
-
current_options = []
|
144 |
-
|
145 |
-
elif line.startswith(('A)', 'B)', 'C)', 'D)')):
|
146 |
-
option = line[2:].strip()
|
147 |
-
if option:
|
148 |
-
current_options.append(option)
|
149 |
-
|
150 |
-
elif 'CORRECT:' in line.upper() or 'KORREKT:' in line.upper():
|
151 |
-
correct_part = line.upper().split('CORRECT:')[-1].split('KORREKT:')[-1].strip()
|
152 |
-
if correct_part and correct_part[0] in ['A', 'B', 'C', 'D']:
|
153 |
-
current_question["korrekt_svar"] = ['A', 'B', 'C', 'D'].index(correct_part[0])
|
154 |
-
|
155 |
-
elif 'EXPLANATION:' in line.upper() or 'FORKLARING:' in line.upper():
|
156 |
-
explanation = line.split(':')[1].strip() if ':' in line else line
|
157 |
-
current_question["forklaring"] = explanation
|
158 |
-
|
159 |
-
# Add the last question if complete
|
160 |
-
if self._is_complete_question(current_question, current_options):
|
161 |
-
current_question["alternativer"] = current_options
|
162 |
-
questions.append(current_question)
|
163 |
-
|
164 |
-
return questions
|
165 |
|
166 |
-
def
|
167 |
-
"""
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
def
|
176 |
-
"""Generate
|
|
|
|
|
|
|
177 |
questions = []
|
178 |
|
179 |
-
#
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
f"
|
193 |
-
|
194 |
-
|
195 |
-
f"
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
# Initialize the AI generator
|
204 |
quiz_generator = AIQuizGenerator()
|
205 |
|
206 |
-
# API endpoint for quiz generation
|
207 |
def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
|
208 |
type: str = "sted", vanskelighetsgrad: int = 3,
|
209 |
api_key: str = None) -> Dict[str, Any]:
|
210 |
-
"""API endpoint for quiz generation
|
211 |
|
212 |
-
# Validate API key
|
213 |
if not validate_api_key(api_key):
|
214 |
return {
|
215 |
"success": False,
|
@@ -217,7 +285,6 @@ def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
|
|
217 |
"questions": []
|
218 |
}
|
219 |
|
220 |
-
# NO TOPIC FILTERING - Accept absolutely anything
|
221 |
if not tema or len(tema.strip()) < 2:
|
222 |
return {
|
223 |
"success": False,
|
@@ -226,21 +293,26 @@ def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
|
|
226 |
}
|
227 |
|
228 |
try:
|
229 |
-
# Generate questions with AI - NO RESTRICTIONS
|
230 |
start_time = time.time()
|
231 |
questions = quiz_generator.generate_quiz(tema.strip(), antall_spørsmål, språk)
|
232 |
-
|
|
|
|
|
|
|
|
|
233 |
|
234 |
return {
|
235 |
"success": True,
|
236 |
"questions": questions,
|
237 |
"metadata": {
|
238 |
-
"generation_time": round(
|
239 |
-
"model_used":
|
240 |
"topic": tema,
|
241 |
-
"
|
|
|
242 |
},
|
243 |
-
"message": f"Genererte {len(questions)} spørsmål om '{tema}'
|
|
|
244 |
}
|
245 |
except Exception as e:
|
246 |
print(f"Error in generate_quiz_api: {str(e)}")
|
@@ -250,9 +322,9 @@ def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
|
|
250 |
"questions": []
|
251 |
}
|
252 |
|
253 |
-
# Gradio interface
|
254 |
def generate_quiz_gradio(tema, antall, api_key=None):
|
255 |
-
"""Gradio wrapper
|
256 |
if api_key and not validate_api_key(api_key):
|
257 |
return "❌ **Ugyldig API-nøkkel**"
|
258 |
|
@@ -266,13 +338,20 @@ def generate_quiz_gradio(tema, antall, api_key=None):
|
|
266 |
return f"❌ **Feil:** {result['message']}"
|
267 |
|
268 |
questions = result["questions"]
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
output = f"✅ **Genererte {len(questions)} spørsmål om '{tema}'**\n\n"
|
273 |
-
output += f"
|
274 |
-
output += f"
|
275 |
-
output += f"
|
276 |
|
277 |
for i, q in enumerate(questions, 1):
|
278 |
output += f"📝 **Spørsmål {i}:** {q['spørsmål']}\n"
|
@@ -286,21 +365,25 @@ def generate_quiz_gradio(tema, antall, api_key=None):
|
|
286 |
except Exception as e:
|
287 |
return f"❌ **Feil:** {str(e)}"
|
288 |
|
289 |
-
# Health check
|
290 |
def health_check():
|
291 |
-
return {
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
# Gradio interface
|
294 |
-
with gr.Blocks(title="SoActi AI Quiz API -
|
295 |
-
gr.Markdown("# 🧠 SoActi AI Quiz API -
|
296 |
-
gr.Markdown("
|
297 |
|
298 |
with gr.Row():
|
299 |
with gr.Column():
|
300 |
tema_input = gr.Textbox(
|
301 |
-
label="Tema
|
302 |
-
value="",
|
303 |
-
placeholder="Fotball,
|
304 |
)
|
305 |
antall_input = gr.Slider(
|
306 |
minimum=1,
|
@@ -310,18 +393,18 @@ with gr.Blocks(title="SoActi AI Quiz API - Ubegrenset") as demo:
|
|
310 |
value=3
|
311 |
)
|
312 |
api_key_input = gr.Textbox(
|
313 |
-
label="API-nøkkel
|
314 |
placeholder="Skriv inn API-nøkkel...",
|
315 |
type="password"
|
316 |
)
|
317 |
|
318 |
-
generate_btn = gr.Button("🚀 Generer Quiz
|
319 |
|
320 |
with gr.Column():
|
321 |
output = gr.Textbox(
|
322 |
label="Generert Quiz",
|
323 |
lines=20,
|
324 |
-
placeholder="Skriv inn
|
325 |
)
|
326 |
|
327 |
generate_btn.click(
|
@@ -330,16 +413,15 @@ with gr.Blocks(title="SoActi AI Quiz API - Ubegrenset") as demo:
|
|
330 |
outputs=output
|
331 |
)
|
332 |
|
333 |
-
gr.Markdown("## 🔗 API
|
334 |
gr.Markdown("`POST https://Soacti-soacti-ai-quiz-api.hf.space/generate-quiz`")
|
335 |
-
gr.Markdown("**🔓 Ingen begrensninger - brukere kan spørre om hva som helst!**")
|
336 |
|
337 |
-
# FastAPI setup
|
338 |
from fastapi import FastAPI, HTTPException, Depends, Header
|
339 |
from fastapi.middleware.cors import CORSMiddleware
|
340 |
from pydantic import BaseModel
|
341 |
|
342 |
-
app = FastAPI(title="SoActi Quiz API -
|
343 |
|
344 |
app.add_middleware(
|
345 |
CORSMiddleware,
|
@@ -350,7 +432,7 @@ app.add_middleware(
|
|
350 |
)
|
351 |
|
352 |
class QuizRequest(BaseModel):
|
353 |
-
tema: str
|
354 |
språk: str = "no"
|
355 |
antall_spørsmål: int = 3
|
356 |
type: str = "sted"
|
@@ -368,9 +450,8 @@ async def get_api_key(authorization: str = Header(None)):
|
|
368 |
|
369 |
@app.post("/generate-quiz")
|
370 |
async def api_generate_quiz(request: QuizRequest, api_key: str = Depends(get_api_key)):
|
371 |
-
"""Generate quiz about ANY topic - no restrictions"""
|
372 |
result = generate_quiz_api(
|
373 |
-
request.tema,
|
374 |
request.språk,
|
375 |
request.antall_spørsmål,
|
376 |
request.type,
|
|
|
4 |
import os
|
5 |
from typing import List, Dict, Any, Optional
|
6 |
import random
|
7 |
+
import requests
|
|
|
|
|
8 |
|
9 |
# API key validation
|
10 |
def validate_api_key(api_key: str) -> bool:
|
|
|
15 |
return False
|
16 |
return api_key == expected_key
|
17 |
|
18 |
+
# Improved AI Quiz generation
|
19 |
class AIQuizGenerator:
|
20 |
def __init__(self):
|
21 |
self.api_key = os.environ.get("HUGGINGFACE_API_KEY")
|
22 |
+
self.api_url = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
|
|
|
23 |
|
24 |
+
# Backup models to try
|
25 |
+
self.models = [
|
26 |
+
"microsoft/DialoGPT-large",
|
27 |
+
"google/flan-t5-large",
|
28 |
+
"facebook/blenderbot-400M-distill",
|
29 |
+
"microsoft/DialoGPT-medium"
|
30 |
+
]
|
31 |
|
32 |
+
print(f"AI Generator initialized. API key available: {bool(self.api_key)}")
|
|
|
33 |
|
34 |
def generate_quiz(self, tema: str, antall: int = 3, språk: str = "no") -> List[Dict[str, Any]]:
|
35 |
+
"""Generate quiz questions using Hugging Face Inference API"""
|
36 |
+
|
37 |
+
if not self.api_key:
|
38 |
+
print("❌ No Hugging Face API key - using enhanced fallback")
|
39 |
+
return self._generate_enhanced_fallback(tema, antall)
|
40 |
+
|
41 |
+
# Try multiple models until one works
|
42 |
+
for model in self.models:
|
|
|
|
|
|
|
43 |
try:
|
44 |
+
print(f"🤖 Trying model: {model}")
|
45 |
+
questions = self._try_model(model, tema, antall, språk)
|
46 |
+
if questions and len(questions) > 0:
|
47 |
+
print(f"✅ Success with model: {model}")
|
48 |
+
return questions
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
print(f"❌ Model {model} failed: {str(e)}")
|
52 |
+
continue
|
53 |
+
|
54 |
+
print("❌ All AI models failed - using enhanced fallback")
|
55 |
+
return self._generate_enhanced_fallback(tema, antall)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
def _try_model(self, model: str, tema: str, antall: int, språk: str) -> List[Dict[str, Any]]:
|
58 |
+
"""Try a specific model"""
|
|
|
59 |
|
60 |
+
# Create a very specific prompt
|
61 |
+
prompt = self._create_specific_prompt(tema, antall, språk)
|
62 |
+
|
63 |
+
headers = {
|
64 |
+
"Authorization": f"Bearer {self.api_key}",
|
65 |
+
"Content-Type": "application/json"
|
66 |
+
}
|
67 |
+
|
68 |
+
payload = {
|
69 |
+
"inputs": prompt,
|
70 |
+
"parameters": {
|
71 |
+
"max_new_tokens": 800,
|
72 |
+
"temperature": 0.7,
|
73 |
+
"do_sample": True,
|
74 |
+
"top_p": 0.9
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
api_url = f"https://api-inference.huggingface.co/models/{model}"
|
79 |
+
|
80 |
+
start_time = time.time()
|
81 |
+
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
|
82 |
+
generation_time = time.time() - start_time
|
83 |
+
|
84 |
+
print(f"API Response Status: {response.status_code}")
|
85 |
+
|
86 |
+
if response.status_code != 200:
|
87 |
+
raise Exception(f"API returned {response.status_code}: {response.text}")
|
88 |
+
|
89 |
+
result = response.json()
|
90 |
+
|
91 |
+
if isinstance(result, list) and len(result) > 0:
|
92 |
+
generated_text = result[0].get("generated_text", "")
|
93 |
+
else:
|
94 |
+
generated_text = str(result)
|
95 |
+
|
96 |
+
print(f"Generated text preview: {generated_text[:200]}...")
|
97 |
+
|
98 |
+
# Parse the response
|
99 |
+
questions = self._parse_ai_response(generated_text, tema, antall)
|
100 |
+
|
101 |
+
# Add metadata
|
102 |
+
for q in questions:
|
103 |
+
q["_metadata"] = {
|
104 |
+
"model": model,
|
105 |
+
"generation_time": generation_time,
|
106 |
+
"ai_generated": True
|
107 |
+
}
|
108 |
+
|
109 |
+
return questions
|
110 |
+
|
111 |
+
def _create_specific_prompt(self, tema: str, antall: int, språk: str) -> str:
|
112 |
+
"""Create a very specific prompt for better results"""
|
113 |
+
|
114 |
+
if språk == "no":
|
115 |
+
return f"""Lag {antall} quiz-spørsmål om {tema} på norsk.
|
116 |
|
117 |
+
Format:
|
118 |
+
SPØRSMÅL: [konkret spørsmål om {tema}]
|
119 |
+
A) [første alternativ]
|
120 |
+
B) [andre alternativ]
|
121 |
+
C) [tredje alternativ]
|
122 |
+
D) [fjerde alternativ]
|
123 |
+
SVAR: [A, B, C eller D]
|
124 |
+
FORKLARING: [kort forklaring]
|
125 |
|
126 |
+
Eksempel om fotball:
|
127 |
+
SPØRSMÅL: Hvem vant Ballon d'Or i 2023?
|
128 |
+
A) Lionel Messi
|
129 |
+
B) Erling Haaland
|
130 |
+
C) Kylian Mbappé
|
131 |
+
D) Karim Benzema
|
132 |
+
SVAR: A
|
133 |
+
FORKLARING: Lionel Messi vant sin åttende Ballon d'Or i 2023.
|
134 |
|
135 |
+
Nå lag {antall} spørsmål om {tema}:"""
|
136 |
+
else:
|
137 |
+
return f"""Create {antall} quiz questions about {tema} in English.
|
138 |
|
139 |
+
Format:
|
140 |
+
QUESTION: [specific question about {tema}]
|
141 |
+
A) [first option]
|
142 |
+
B) [second option]
|
143 |
+
C) [third option]
|
144 |
+
D) [fourth option]
|
145 |
+
ANSWER: [A, B, C or D]
|
146 |
+
EXPLANATION: [brief explanation]
|
147 |
|
148 |
+
Now create {antall} questions about {tema}:"""
|
|
|
|
|
149 |
|
150 |
+
def _parse_ai_response(self, text: str, tema: str, expected_count: int) -> List[Dict[str, Any]]:
|
151 |
+
"""Parse AI response into structured questions"""
|
152 |
questions = []
|
153 |
|
154 |
+
# Split into sections
|
155 |
+
sections = text.split("SPØRSMÅL:") if "SPØRSMÅL:" in text else text.split("QUESTION:")
|
|
|
|
|
156 |
|
157 |
+
for section in sections[1:]: # Skip first empty section
|
158 |
+
try:
|
159 |
+
question = self._parse_single_question(section, tema)
|
160 |
+
if question:
|
161 |
+
questions.append(question)
|
162 |
+
except Exception as e:
|
163 |
+
print(f"Error parsing question section: {e}")
|
164 |
continue
|
165 |
+
|
166 |
+
return questions[:expected_count]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
def _parse_single_question(self, section: str, tema: str) -> Optional[Dict[str, Any]]:
|
169 |
+
"""Parse a single question from text"""
|
170 |
+
lines = [line.strip() for line in section.split('\n') if line.strip()]
|
171 |
+
|
172 |
+
if not lines:
|
173 |
+
return None
|
174 |
+
|
175 |
+
question_text = lines[0].strip()
|
176 |
+
options = []
|
177 |
+
correct_answer = 0
|
178 |
+
explanation = ""
|
179 |
+
|
180 |
+
for line in lines[1:]:
|
181 |
+
if line.startswith(('A)', 'B)', 'C)', 'D)')):
|
182 |
+
options.append(line[2:].strip())
|
183 |
+
elif line.startswith(('SVAR:', 'ANSWER:')):
|
184 |
+
answer_part = line.split(':', 1)[1].strip()
|
185 |
+
if answer_part in ['A', 'B', 'C', 'D']:
|
186 |
+
correct_answer = ['A', 'B', 'C', 'D'].index(answer_part)
|
187 |
+
elif line.startswith(('FORKLARING:', 'EXPLANATION:')):
|
188 |
+
explanation = line.split(':', 1)[1].strip()
|
189 |
+
|
190 |
+
if len(options) >= 3 and question_text:
|
191 |
+
# Ensure we have 4 options
|
192 |
+
while len(options) < 4:
|
193 |
+
options.append(f"Alternativ {len(options) + 1}")
|
194 |
+
|
195 |
+
return {
|
196 |
+
"spørsmål": question_text,
|
197 |
+
"alternativer": options[:4],
|
198 |
+
"korrekt_svar": correct_answer,
|
199 |
+
"forklaring": explanation or f"Spørsmål om {tema}"
|
200 |
+
}
|
201 |
+
|
202 |
+
return None
|
203 |
|
204 |
+
def _generate_enhanced_fallback(self, tema: str, antall: int) -> List[Dict[str, Any]]:
|
205 |
+
"""Generate better fallback questions based on topic analysis"""
|
206 |
+
|
207 |
+
# Analyze topic to create better questions
|
208 |
+
tema_lower = tema.lower()
|
209 |
questions = []
|
210 |
|
211 |
+
# Football/Soccer specific
|
212 |
+
if any(word in tema_lower for word in ['fotball', 'football', 'soccer', 'messi', 'ronaldo', 'haaland']):
|
213 |
+
questions = [
|
214 |
+
{
|
215 |
+
"spørsmål": "Hvem regnes som en av verdens beste fotballspillere gjennom tidene?",
|
216 |
+
"alternativer": ["Lionel Messi", "Michael Jordan", "Tiger Woods", "Usain Bolt"],
|
217 |
+
"korrekt_svar": 0,
|
218 |
+
"forklaring": "Lionel Messi regnes som en av de beste fotballspillerne noensinne med 8 Ballon d'Or-priser."
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"spørsmål": "Hvilket land har vunnet flest VM i fotball?",
|
222 |
+
"alternativer": ["Tyskland", "Argentina", "Brasil", "Frankrike"],
|
223 |
+
"korrekt_svar": 2,
|
224 |
+
"forklaring": "Brasil har vunnet VM i fotball 5 ganger (1958, 1962, 1970, 1994, 2002)."
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"spørsmål": "Hva kalles den prestisjetunge individuelle prisen i fotball?",
|
228 |
+
"alternativer": ["Golden Boot", "Ballon d'Or", "FIFA Award", "Champions Trophy"],
|
229 |
+
"korrekt_svar": 1,
|
230 |
+
"forklaring": "Ballon d'Or er den mest prestisjetunge individuelle prisen i fotball."
|
231 |
+
}
|
232 |
+
]
|
233 |
|
234 |
+
# Technology specific
|
235 |
+
elif any(word in tema_lower for word in ['teknologi', 'technology', 'ai', 'computer', 'programming']):
|
236 |
+
questions = [
|
237 |
+
{
|
238 |
+
"spørsmål": f"Hva er en viktig utvikling innen {tema}?",
|
239 |
+
"alternativer": ["Kunstig intelligens", "Dampmaskin", "Hjulet", "Ild"],
|
240 |
+
"korrekt_svar": 0,
|
241 |
+
"forklaring": f"Kunstig intelligens er en av de viktigste utviklingene innen moderne {tema}."
|
242 |
+
}
|
243 |
+
]
|
244 |
+
|
245 |
+
# Generic but better questions
|
246 |
+
if not questions:
|
247 |
+
questions = [
|
248 |
+
{
|
249 |
+
"spørsmål": f"Hva er karakteristisk for {tema}?",
|
250 |
+
"alternativer": [f"Viktig egenskap ved {tema}", "Irrelevant faktor", "Tilfeldig element", "Ukjent aspekt"],
|
251 |
+
"korrekt_svar": 0,
|
252 |
+
"forklaring": f"Dette spørsmålet handler om de karakteristiske egenskapene ved {tema}."
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"spørsmål": f"Hvor er {tema} mest relevant?",
|
256 |
+
"alternativer": ["I relevant kontekst", "I irrelevant sammenheng", "Ingen steder", "Overalt"],
|
257 |
+
"korrekt_svar": 0,
|
258 |
+
"forklaring": f"{tema} er mest relevant i sin naturlige kontekst."
|
259 |
+
}
|
260 |
+
]
|
261 |
+
|
262 |
+
# Add metadata to show these are fallbacks
|
263 |
+
for q in questions:
|
264 |
+
q["_metadata"] = {
|
265 |
+
"model": "enhanced_fallback",
|
266 |
+
"generation_time": 0.1,
|
267 |
+
"ai_generated": False
|
268 |
+
}
|
269 |
+
|
270 |
+
return questions[:antall]
|
271 |
|
272 |
# Initialize the AI generator
|
273 |
quiz_generator = AIQuizGenerator()
|
274 |
|
275 |
+
# API endpoint for quiz generation
|
276 |
def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
|
277 |
type: str = "sted", vanskelighetsgrad: int = 3,
|
278 |
api_key: str = None) -> Dict[str, Any]:
|
279 |
+
"""API endpoint for quiz generation"""
|
280 |
|
|
|
281 |
if not validate_api_key(api_key):
|
282 |
return {
|
283 |
"success": False,
|
|
|
285 |
"questions": []
|
286 |
}
|
287 |
|
|
|
288 |
if not tema or len(tema.strip()) < 2:
|
289 |
return {
|
290 |
"success": False,
|
|
|
293 |
}
|
294 |
|
295 |
try:
|
|
|
296 |
start_time = time.time()
|
297 |
questions = quiz_generator.generate_quiz(tema.strip(), antall_spørsmål, språk)
|
298 |
+
total_time = time.time() - start_time
|
299 |
+
|
300 |
+
# Check if we got real AI questions or fallbacks
|
301 |
+
ai_generated = any(q.get("_metadata", {}).get("ai_generated", False) for q in questions)
|
302 |
+
model_used = questions[0].get("_metadata", {}).get("model", "unknown") if questions else "none"
|
303 |
|
304 |
return {
|
305 |
"success": True,
|
306 |
"questions": questions,
|
307 |
"metadata": {
|
308 |
+
"generation_time": round(total_time, 2),
|
309 |
+
"model_used": model_used,
|
310 |
"topic": tema,
|
311 |
+
"ai_generated": ai_generated,
|
312 |
+
"fallback_used": not ai_generated
|
313 |
},
|
314 |
+
"message": f"Genererte {len(questions)} spørsmål om '{tema}'" +
|
315 |
+
(" med AI" if ai_generated else " med forbedret fallback")
|
316 |
}
|
317 |
except Exception as e:
|
318 |
print(f"Error in generate_quiz_api: {str(e)}")
|
|
|
322 |
"questions": []
|
323 |
}
|
324 |
|
325 |
+
# Gradio interface
|
326 |
def generate_quiz_gradio(tema, antall, api_key=None):
|
327 |
+
"""Gradio wrapper"""
|
328 |
if api_key and not validate_api_key(api_key):
|
329 |
return "❌ **Ugyldig API-nøkkel**"
|
330 |
|
|
|
338 |
return f"❌ **Feil:** {result['message']}"
|
339 |
|
340 |
questions = result["questions"]
|
341 |
+
metadata = result["metadata"]
|
342 |
+
|
343 |
+
# Show different info based on whether AI was used
|
344 |
+
if metadata.get("ai_generated", False):
|
345 |
+
status_icon = "🤖"
|
346 |
+
status_text = "AI-generert"
|
347 |
+
else:
|
348 |
+
status_icon = "🔄"
|
349 |
+
status_text = "Forbedret fallback"
|
350 |
|
351 |
output = f"✅ **Genererte {len(questions)} spørsmål om '{tema}'**\n\n"
|
352 |
+
output += f"{status_icon} **Type:** {status_text}\n"
|
353 |
+
output += f"⚙️ **Modell:** {metadata['model_used']}\n"
|
354 |
+
output += f"⏱️ **Tid:** {metadata['generation_time']}s\n\n"
|
355 |
|
356 |
for i, q in enumerate(questions, 1):
|
357 |
output += f"📝 **Spørsmål {i}:** {q['spørsmål']}\n"
|
|
|
365 |
except Exception as e:
|
366 |
return f"❌ **Feil:** {str(e)}"
|
367 |
|
368 |
+
# Health check
|
369 |
def health_check():
|
370 |
+
return {
|
371 |
+
"status": "healthy",
|
372 |
+
"timestamp": time.time(),
|
373 |
+
"ai_available": bool(os.environ.get("HUGGINGFACE_API_KEY"))
|
374 |
+
}
|
375 |
|
376 |
+
# Gradio interface
|
377 |
+
with gr.Blocks(title="SoActi AI Quiz API - Forbedret") as demo:
|
378 |
+
gr.Markdown("# 🧠 SoActi AI Quiz API - Forbedret")
|
379 |
+
gr.Markdown("**🚀 Ekte AI-generering med forbedret fallback**")
|
380 |
|
381 |
with gr.Row():
|
382 |
with gr.Column():
|
383 |
tema_input = gr.Textbox(
|
384 |
+
label="Tema",
|
385 |
+
value="verdens beste fotballspillere",
|
386 |
+
placeholder="Fotball, teknologi, historie, mat, filmer..."
|
387 |
)
|
388 |
antall_input = gr.Slider(
|
389 |
minimum=1,
|
|
|
393 |
value=3
|
394 |
)
|
395 |
api_key_input = gr.Textbox(
|
396 |
+
label="API-nøkkel",
|
397 |
placeholder="Skriv inn API-nøkkel...",
|
398 |
type="password"
|
399 |
)
|
400 |
|
401 |
+
generate_btn = gr.Button("🚀 Generer Forbedret Quiz!", variant="primary")
|
402 |
|
403 |
with gr.Column():
|
404 |
output = gr.Textbox(
|
405 |
label="Generert Quiz",
|
406 |
lines=20,
|
407 |
+
placeholder="Skriv inn et tema og test den forbedrede AI-genereringen!"
|
408 |
)
|
409 |
|
410 |
generate_btn.click(
|
|
|
413 |
outputs=output
|
414 |
)
|
415 |
|
416 |
+
gr.Markdown("## 🔗 API Endepunkt")
|
417 |
gr.Markdown("`POST https://Soacti-soacti-ai-quiz-api.hf.space/generate-quiz`")
|
|
|
418 |
|
419 |
+
# FastAPI setup
|
420 |
from fastapi import FastAPI, HTTPException, Depends, Header
|
421 |
from fastapi.middleware.cors import CORSMiddleware
|
422 |
from pydantic import BaseModel
|
423 |
|
424 |
+
app = FastAPI(title="SoActi Quiz API - Forbedret")
|
425 |
|
426 |
app.add_middleware(
|
427 |
CORSMiddleware,
|
|
|
432 |
)
|
433 |
|
434 |
class QuizRequest(BaseModel):
|
435 |
+
tema: str
|
436 |
språk: str = "no"
|
437 |
antall_spørsmål: int = 3
|
438 |
type: str = "sted"
|
|
|
450 |
|
451 |
@app.post("/generate-quiz")
|
452 |
async def api_generate_quiz(request: QuizRequest, api_key: str = Depends(get_api_key)):
|
|
|
453 |
result = generate_quiz_api(
|
454 |
+
request.tema,
|
455 |
request.språk,
|
456 |
request.antall_spørsmål,
|
457 |
request.type,
|