Spaces:
Runtime error
Runtime error
Soham Chandratre
commited on
Commit
·
94c7394
1
Parent(s):
5e6c258
minor changes
Browse files- keras_model.h5 +3 -0
- labels.txt +2 -0
- model/pothole_model.py +33 -56
- requirements.txt +1 -2
keras_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c72459c9ab862eb75b5d073e54b34dd04e81c1fc117aa64dcff248c97e97840
|
| 3 |
+
size 2453432
|
labels.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
0 pothole
|
| 2 |
+
1 notpothole
|
model/pothole_model.py
CHANGED
|
@@ -1,67 +1,44 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
|
| 5 |
-
# def load_model(image):
|
| 6 |
-
# # image_bytes = image.content
|
| 7 |
-
# model = YOLO('keremberke/yolov8n-pothole-segmentation')
|
| 8 |
-
# model.overrides['conf'] = 0.25
|
| 9 |
-
# model.overrides['iou'] = 0.45
|
| 10 |
-
# model.overrides['agnostic_nms'] = False
|
| 11 |
-
# model.overrides['max_det'] = 1000
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# image_array = np.array(image)
|
| 16 |
-
# # pil_image = pil_image.convert("RGB") # Ensure image is in RGB format
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
# # pil_image.save(output, format='JPEG')
|
| 21 |
-
# # image_bytes = output.getvalue()
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
# boxes = result.boxes.xyxy
|
| 26 |
-
# conf = result.boxes.conf
|
| 27 |
-
# cls = result.boxes.cls
|
| 28 |
-
# obj_info = []
|
| 29 |
-
# for i, bbox in enumerate(boxes):
|
| 30 |
-
# label = result.names[int(cls[i])]
|
| 31 |
-
# obj_info.append({
|
| 32 |
-
# "Object": i+1,
|
| 33 |
-
# "Label": label,
|
| 34 |
-
# "Confidence": conf[i],
|
| 35 |
-
# "Bounding Box": bbox
|
| 36 |
-
# })
|
| 37 |
-
# render = render_result(model=model, image=image, result=results[0])
|
| 38 |
-
# if label:
|
| 39 |
-
# print(label)
|
| 40 |
-
# render.show()
|
| 41 |
-
# return label
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
image = Image.open(BytesIO(image_url))
|
| 55 |
-
inputs = processor(images=image, return_tensors="pt")
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
logits = outputs.logits
|
| 60 |
-
probabilities = logits.softmax(dim=1)
|
| 61 |
-
|
| 62 |
-
# Get predicted class (0: No pothole, 1: Pothole)
|
| 63 |
-
predicted_class = probabilities.argmax().item()
|
| 64 |
-
confidence = probabilities[0, predicted_class].item()
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras.models import load_model # TensorFlow is required for Keras to work
|
| 2 |
+
from PIL import Image, ImageOps # Install pillow instead of PIL
|
| 3 |
+
import numpy as np
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
def load_image_model(image):
|
| 7 |
+
np.set_printoptions(suppress=True)
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Load the model
|
| 10 |
+
model = load_model("keras_Model.h5", compile=False)
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Load the labels
|
| 13 |
+
class_names = open("labels.txt", "r").readlines()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Create the array of the right shape to feed into the keras model
|
| 16 |
+
# The 'length' or number of images you can put into the array is
|
| 17 |
+
# determined by the first position in the shape tuple, in this case 1
|
| 18 |
+
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
| 19 |
|
| 20 |
+
# Replace this with the path to your image
|
| 21 |
+
image = Image.open(image).convert("RGB")
|
|
|
|
| 22 |
|
| 23 |
+
# resizing the image to be at least 224x224 and then cropping from the center
|
| 24 |
+
size = (224, 224)
|
| 25 |
+
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
|
| 26 |
|
| 27 |
+
# turn the image into a numpy array
|
| 28 |
+
image_array = np.asarray(image)
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Normalize the image
|
| 31 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Load the image into the array
|
| 34 |
+
data[0] = normalized_image_array
|
| 35 |
|
| 36 |
+
# Predicts the model
|
| 37 |
+
prediction = model.predict(data)
|
| 38 |
+
index = np.argmax(prediction)
|
| 39 |
+
class_name = class_names[index]
|
| 40 |
+
confidence_score = prediction[0][index]
|
| 41 |
+
|
| 42 |
+
# Print prediction and confidence score
|
| 43 |
+
print("Class:", class_name[2:], end="")
|
| 44 |
+
print("Confidence Score:", confidence_score)
|
requirements.txt
CHANGED
|
@@ -7,6 +7,5 @@ python-jose[cryptography]
|
|
| 7 |
python-multipart
|
| 8 |
certifi
|
| 9 |
firebase-admin
|
| 10 |
-
transformers
|
| 11 |
pillow
|
| 12 |
-
|
|
|
|
| 7 |
python-multipart
|
| 8 |
certifi
|
| 9 |
firebase-admin
|
|
|
|
| 10 |
pillow
|
| 11 |
+
tensorflow==2.13.1
|