# app.py – 2025‑06 update import os, cv2, time, psutil, shutil, tempfile, zipfile, numpy as np, gradio as gr from paddleocr import PaddleOCR # ------------------------------------------------------------------------ # 1. PaddleOCR – latest lightweight v5‑mobile with angle‑cls disabled # ------------------------------------------------------------------------ ocr = PaddleOCR( lang="en", det_model_dir="ppocr_v5_det", rec_model_dir="ppocr_v5_rec", use_angle_cls=False, # comic bubbles are already horizontal show_log=False ) # ------------------------------------------------------------------------ # 2. Utility helpers # ------------------------------------------------------------------------ def wait_for_cpu(th=90, interval=3, timeout=30): """Pause if CPU is saturated (helps on free‑tier Spaces).""" start = time.time() while psutil.cpu_percent(interval=1) > th: time.sleep(interval) if time.time() - start > timeout: break def classify_bg(avg, w=230, b=50, y=100): r, g, b_ = avg if r >= w and g >= w and b_ >= w: # white return (255, 255, 255) if r <= b and g <= b and b_ <= b: # black return (0, 0, 0) if r >= y and g >= y and b_ < y: # yellowish narration box return (255, 255, 0) return None def sample_border(img, box, pad=2): h, w = img.shape[:2] x1, y1, x2, y2 = box x1, x2 = max(0, x1 - pad), min(w - 1, x2 + pad) y1, y2 = max(0, y1 - pad), min(h - 1, y2 + pad) border = np.concatenate([ img[y1:y1+pad, x1:x2], img[y2-pad:y2, x1:x2], img[y1:y2, x1:x1+pad], img[y1:y2, x2-pad:x2] ], axis=0) return tuple(np.median(border.reshape(-1, 3), axis=0).astype(int)) # ------------------------------------------------------------------------ # 3. Bubble‑mask (simple heuristic: very‑light regions enclosed) # ------------------------------------------------------------------------ def make_bubble_mask(rgb): gray = cv2.cvtColor(rgb, cv2.COLOR_RGB2GRAY) # threshold near‑white & narration‑yellow _, white = cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY) # small morph closing to join dotted edges kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)) mask = cv2.morphologyEx(white, cv2.MORPH_CLOSE, kernel, iterations=2) return mask // 255 # 0/1 # ------------------------------------------------------------------------ # 4. Detect & clean # ------------------------------------------------------------------------ def remove_text_in_bubbles(img_path, dst_path): bgr = cv2.imread(img_path) if bgr is None: # skip unreadable return rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) bubble_mask = make_bubble_mask(rgb) results = ocr.ocr(rgb, cls=False) if not results or not results[0]: cv2.imwrite(dst_path, bgr) return for line in results[0]: box = line[0] text, conf = line[1] if conf < 0.4 or not text.strip(): continue # bounding box xs, ys = zip(*box) x1, x2 = int(min(xs)), int(max(xs)) y1, y2 = int(min(ys)), int(max(ys)) # skip if box centre is outside bubble mask cx, cy = int((x1+x2)/2), int((y1+y2)/2) if bubble_mask[cy, cx] == 0: continue # text is not inside a bubble # dynamic padding by height h_box = y2 - y1 pad = 2 if h_box <= 30 else 4 if h_box <= 60 else 6 x1p, y1p = max(0, x1-pad), max(0, y1-pad) x2p, y2p = min(rgb.shape[1]-1, x2+pad), min(rgb.shape[0]-1, y2+pad) # choose fill colour crop = rgb[y1p:y2p, x1p:x2p] fill = classify_bg(np.mean(crop.reshape(-1,3), axis=0)) if fill is None: fill = sample_border(rgb, (x1, y1, x2, y2)) cv2.rectangle(bgr, (x1p, y1p), (x2p, y2p), fill, thickness=-1) cv2.imwrite(dst_path, bgr) # ------------------------------------------------------------------------ # 5. Gradio batch wrapper # ------------------------------------------------------------------------ def process_folder(files): wait_for_cpu() out_dir = tempfile.mkdtemp() for f in files: fname = os.path.basename(f) remove_text_in_bubbles(f, os.path.join(out_dir, fname)) zip_path = shutil.make_archive(out_dir, 'zip', out_dir) return zip_path # ------------------------------------------------------------------------ # 6. Gradio UI # ------------------------------------------------------------------------ demo = gr.Interface( fn=process_folder, inputs=gr.File(file_types=[".jpg", ".jpeg", ".png"], label="Upload comic page images", file_count="multiple"), outputs=gr.File(label="Download cleaned .zip"), title="Comic Bubble Text Cleaner – PP‑OCRv5", description=("Removes speech/thought/narration bubble text only, " "leaving outside FX or captions untouched. " "Powered by PaddleOCR PP‑OCRv5‑mobile."), concurrency_limit=1 ) if __name__ == "__main__": demo.launch()