SohomToom commited on
Commit
8a7c219
·
verified ·
1 Parent(s): 066758b
Files changed (2) hide show
  1. ToomBComicCleanerGradio.py +120 -0
  2. requirement.txt +5 -0
ToomBComicCleanerGradio.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import os
3
+ import shutil
4
+ import tempfile
5
+ import cv2
6
+ import numpy as np
7
+ import gradio as gr
8
+ from paddleocr import PaddleOCR
9
+
10
+ ocr = PaddleOCR(use_angle_cls=True, lang='en', det_model_dir='models/det', rec_model_dir='models/rec', cls_model_dir='models/cls')
11
+
12
+ def classify_background_color(avg_color, white_thresh=230, black_thresh=50, yellow_thresh=100):
13
+ r, g, b = avg_color
14
+ if r >= white_thresh and g >= white_thresh and b >= white_thresh:
15
+ return (255, 255, 255)
16
+ if r <= black_thresh and g <= black_thresh and b <= black_thresh:
17
+ return (0, 0, 0)
18
+ if r >= yellow_thresh and g >= yellow_thresh and b < yellow_thresh:
19
+ return (255, 255, 0)
20
+ return None
21
+
22
+ def sample_border_color(image, box, padding=2):
23
+ h, w = image.shape[:2]
24
+ x_min, y_min, x_max, y_max = box
25
+ x_min = max(0, x_min - padding)
26
+ x_max = min(w-1, x_max + padding)
27
+ y_min = max(0, y_min - padding)
28
+ y_max = min(h-1, y_max + padding)
29
+
30
+ top = image[y_min:y_min+padding, x_min:x_max]
31
+ bottom = image[y_max-padding:y_max, x_min:x_max]
32
+ left = image[y_min:y_max, x_min:x_min+padding]
33
+ right = image[y_min:y_max, x_max-padding:x_max]
34
+
35
+ border_pixels = np.vstack((top.reshape(-1, 3), bottom.reshape(-1, 3),
36
+ left.reshape(-1, 3), right.reshape(-1, 3)))
37
+ if border_pixels.size == 0:
38
+ return (255, 255, 255)
39
+ median_color = np.median(border_pixels, axis=0)
40
+ return tuple(map(int, median_color))
41
+
42
+ def detect_text_boxes(image):
43
+ results = ocr.ocr(image, cls=True)
44
+ if not results or not results[0]:
45
+ return []
46
+ boxes = []
47
+ for line in results[0]:
48
+ box, (text, confidence) = line
49
+ if text.strip():
50
+ x_min = int(min(pt[0] for pt in box))
51
+ x_max = int(max(pt[0] for pt in box))
52
+ y_min = int(min(pt[1] for pt in box))
53
+ y_max = int(max(pt[1] for pt in box))
54
+ boxes.append(((x_min, y_min, x_max, y_max), text, confidence))
55
+ return boxes
56
+
57
+ def remove_text_dynamic_fill(img_path, output_path):
58
+ image = cv2.imread(img_path)
59
+ if image is None:
60
+ return
61
+
62
+ if len(image.shape) == 2:
63
+ image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
64
+ elif image.shape[2] == 1:
65
+ image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
66
+ else:
67
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
68
+
69
+ boxes = detect_text_boxes(image)
70
+
71
+ for (bbox, text, confidence) in boxes:
72
+ if confidence < 0.4 or not text.strip():
73
+ continue
74
+
75
+ x_min, y_min, x_max, y_max = bbox
76
+ height = y_max - y_min
77
+
78
+ if height <= 30:
79
+ padding = 2
80
+ elif height <= 60:
81
+ padding = 4
82
+ else:
83
+ padding = 6
84
+
85
+ x_min_p = max(0, x_min - padding)
86
+ y_min_p = max(0, y_min - padding)
87
+ x_max_p = min(image.shape[1]-1, x_max + padding)
88
+ y_max_p = min(image.shape[0]-1, y_max + padding)
89
+
90
+ sample_crop = image[y_min_p:y_max_p, x_min_p:x_max_p]
91
+ avg_color = np.mean(sample_crop.reshape(-1, 3), axis=0)
92
+
93
+ fill_color = classify_background_color(avg_color)
94
+ if fill_color is None:
95
+ fill_color = sample_border_color(image, (x_min, y_min, x_max, y_max))
96
+
97
+ cv2.rectangle(image, (x_min_p, y_min_p), (x_max_p, y_max_p), fill_color, -1)
98
+
99
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
100
+ cv2.imwrite(output_path, image)
101
+
102
+ def process_folder(input_files):
103
+ temp_output = tempfile.mkdtemp()
104
+ for file in input_files:
105
+ filename = os.path.basename(file.name)
106
+ output_path = os.path.join(temp_output, filename)
107
+ remove_text_dynamic_fill(file.name, output_path)
108
+
109
+ zip_path = shutil.make_archive(temp_output, 'zip', temp_output)
110
+ return zip_path
111
+
112
+ demo = gr.Interface(
113
+ fn=process_folder,
114
+ inputs=gr.File(file_types=[".jpg", ".jpeg", ".png"], file_count="multiple", label="Upload Comic Images"),
115
+ outputs=gr.File(label="Download Cleaned Zip"),
116
+ title="Comic Text Cleaner",
117
+ description="Upload comic images and get a zip of cleaned versions (text removed). Uses PaddleOCR for detection."
118
+ )
119
+
120
+ demo.launch()
requirement.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ numpy
2
+ opencv-python
3
+ paddlepaddle
4
+ paddleocr
5
+ gradio