File size: 9,733 Bytes
9e3182d
 
 
235e7c7
bebc496
9e3182d
68f40ec
bebc496
b9d2659
235e7c7
 
c849c89
8fd86b6
 
 
 
 
9e3182d
 
 
 
6e7a5e3
9e3182d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd86b6
 
 
 
 
 
 
 
 
 
cb04900
9e3182d
8fd86b6
 
9e3182d
8fd86b6
c68ab45
 
8fd86b6
f4a6ae0
9e3182d
8fd86b6
235e7c7
 
8fd86b6
 
96c6f9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90a97f4
 
 
 
 
 
96c6f9a
90a97f4
 
96c6f9a
90a97f4
8fd86b6
 
 
 
 
 
 
 
 
b9d2659
96c6f9a
235e7c7
c68ab45
8fd86b6
 
b9d2659
96c6f9a
 
 
8fd86b6
b9d2659
96c6f9a
 
 
 
 
8fd86b6
 
 
 
 
 
 
96c6f9a
 
 
 
 
b9bf9b2
9e3182d
8fd86b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
os.environ["NUMBA_DISABLE_CACHE"] = "1"

import os
import gradio as gr
from docx import Document
from TTS.api import TTS
import tempfile
import zipfile
from io import BytesIO
import re

from pydub import AudioSegment

final_audio = AudioSegment.empty()


# Voice model
VOICE_MODEL = "tts_models/en/vctk/vits"

# Embedded metadata (from your file)
SPEAKER_METADATA = {
	    300: { "age": 23, "gender": "F", "accent": "American"},
	    271: { "age": 19, "gender": "M", "accent": "Scottish"},
	    287: { "age": 23, "gender": "M", "accent": "English"},
	    262: { "age": 23, "gender": "F", "accent": "Scottish"},
	    284: { "age": 20, "gender": "M", "accent": "Scottish"},
	    297: { "age": 20, "gender": "F", "accent": "American"},
	    227: { "age": 38, "gender": "M", "accent": "English"},
	    246: { "age": 22, "gender": "M", "accent": "Scottish"},
	    225: { "age": 23, "gender": "F", "accent": "English"},
	    259: { "age": 23, "gender": "M", "accent": "English"},
	    252: { "age": 22, "gender": "M", "accent": "Scottish"},
	    231: { "age": 23, "gender": "F", "accent": "English"},
	    266: { "age": 22, "gender": "F", "accent": "Irish"},
	    241: { "age": 21, "gender": "M", "accent": "Scottish"},
	    312: { "age": 19, "gender": "F", "accent": "Canadian"},
	    329: { "age": 23, "gender": "F", "accent": "American"},
	    232: { "age": 23, "gender": "M", "accent": "English"},
	    305: { "age": 19, "gender": "F", "accent": "American"},
	    311: { "age": 21, "gender": "M", "accent": "American"},
	    301: { "age": 23, "gender": "F", "accent": "American"},
	    304: { "age": 22, "gender": "M", "accent": "NorthernIrish"},
	    310: { "age": 21, "gender": "F", "accent": "American"},
	    260: { "age": 21, "gender": "M", "accent": "Scottish"},
	    315: { "age": 18, "gender": "M", "accent": "American"},
	    374: { "age": 28, "gender": "M", "accent": "Australian"},
	    364: { "age": 23, "gender": "M", "accent": "Irish"},
	    269: { "age": 20, "gender": "F", "accent": "English"},
	    345: { "age": 22, "gender": "M", "accent": "American"},
	    326: { "age": 26, "gender": "M", "accent": "Australian"},
	    343: { "age": 27, "gender": "F", "accent": "Canadian"},
	    230: { "age": 22, "gender": "F", "accent": "English"},
	    376: { "age": 22, "gender": "M", "accent": "Indian"},
	    240: { "age": 21, "gender": "F", "accent": "English"},
	    298: { "age": 19, "gender": "M", "accent": "Irish"},
	    272: { "age": 23, "gender": "M", "accent": "Scottish"},
	    248: { "age": 23, "gender": "F", "accent": "Indian"},
	    264: { "age": 23, "gender": "F", "accent": "Scottish"},
	    250: { "age": 22, "gender": "F", "accent": "English"},
	    292: { "age": 23, "gender": "M", "accent": "NorthernIrish"},
	    237: { "age": 22, "gender": "M", "accent": "Scottish"},
	    363: { "age": 22, "gender": "M", "accent": "Canadian"},
	    313: { "age": 24, "gender": "F", "accent": "Irish"},
	    285: { "age": 21, "gender": "M", "accent": "Scottish"},
	    268: { "age": 23, "gender": "F", "accent": "English"},
	    302: { "age": 20, "gender": "M", "accent": "Canadian"},
	    261: { "age": 26, "gender": "F", "accent": "NorthernIrish"},
	    336: { "age": 18, "gender": "F", "accent": "SouthAfrican"},
	    288: { "age": 22, "gender": "F", "accent": "Irish"},
	    226: { "age": 22, "gender": "M", "accent": "English"},
	    277: { "age": 23, "gender": "F", "accent": "English"},
	    360: { "age": 19, "gender": "M", "accent": "American"},
	    257: { "age": 24, "gender": "F", "accent": "English"},
	    254: { "age": 21, "gender": "M", "accent": "English"},
	    339: { "age": 21, "gender": "F", "accent": "American"},
	    323: { "age": 19, "gender": "F", "accent": "SouthAfrican"},
	    255: { "age": 19, "gender": "M", "accent": "Scottish"},
	    249: { "age": 22, "gender": "F", "accent": "Scottish"},
	    293: { "age": 22, "gender": "F", "accent": "NorthernIrish"},
	    244: { "age": 22, "gender": "F", "accent": "English"},
	    245: { "age": 25, "gender": "M", "accent": "Irish"},
	    361: { "age": 19, "gender": "F", "accent": "American"},
	    314: { "age": 26, "gender": "F", "accent": "SouthAfrican"},
	    308: { "age": 18, "gender": "F", "accent": "American"},
	    229: { "age": 23, "gender": "F", "accent": "English"},
	    341: { "age": 26, "gender": "F", "accent": "American"},
	    275: { "age": 23, "gender": "M", "accent": "Scottish"},
	    263: { "age": 22, "gender": "M", "accent": "Scottish"},
	    253: { "age": 22, "gender": "F", "accent": "Welsh"},
	    299: { "age": 25, "gender": "F", "accent": "American"},
	    316: { "age": 20, "gender": "M", "accent": "Canadian"},
	    282: { "age": 23, "gender": "F", "accent": "English"},
	    362: { "age": 29, "gender": "F", "accent": "American"},
	    294: { "age": 33, "gender": "F", "accent": "American"},
	    274: { "age": 22, "gender": "M", "accent": "English"},
	    279: { "age": 23, "gender": "M", "accent": "English"},
	    281: { "age": 29, "gender": "M", "accent": "Scottish"},
	    286: { "age": 23, "gender": "M", "accent": "English"},
	    258: { "age": 22, "gender": "M", "accent": "English"},
	    247: { "age": 22, "gender": "M", "accent": "Scottish"},
	    351: { "age": 21, "gender": "F", "accent": "NorthernIrish"},
	    283: { "age": 24, "gender": "F", "accent": "Irish"},
	    334: { "age": 18, "gender": "M", "accent": "American"},
	    333: { "age": 19, "gender": "F", "accent": "American"},
	    295: { "age": 23, "gender": "F", "accent": "Irish"},
	    330: { "age": 26, "gender": "F", "accent": "American"},
	    335: { "age": 25, "gender": "F", "accent": "NewZealand"},
	    228: { "age": 22, "gender": "F", "accent": "English"},
	    267: { "age": 23, "gender": "F", "accent": "English"},
	    273: { "age": 18, "gender": "F", "accent": "English"}
	}

def clean_text(text):
    # Remove hyperlinks
    return re.sub(r'http[s]?://\S+', '', text)

def extract_paragraphs_from_docx(docx_file):
    document = Document(docx_file.name)
    paragraphs = [p.text.strip() for p in document.paragraphs if p.text.strip()]
    return [clean_text(p) for p in paragraphs]

def list_speaker_choices():
    return [f"{sid} | {meta['gender']} | {meta['accent']}" for sid, meta in SPEAKER_METADATA.items()]

def get_speaker_id_from_label(label):
    return label.split('|')[0].strip()

def generate_sample_audio(sample_text, speaker_label):
    if len(sample_text) > 500:
        raise gr.Error("Sample text exceeds 500 characters.")
    speaker_id = get_speaker_id_from_label(speaker_label)
    model = TTS("tts_models/en/vctk/vits")
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
        model.tts_to_file(text=sample_text, speaker="p"+speaker_id, file_path=tmp_wav.name)
        return tmp_wav.name

def generate_audio(docx_file, speaker_label):
    speaker_id = get_speaker_id_from_label(speaker_label)
    
    if engine_choice == "Bark":
        from bark import generate_audio
        from bark.generation import preload_models
        preload_models()
        audio_array = generate_audio(sample_text)
        tmp_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
        AudioSegment(audio_array.tobytes(), frame_rate=24000, sample_width=2, channels=1).export(tmp_path, format="wav")
        return tmp_path
    else:    
        model = TTS("tts_models/en/vctk/vits")
        paragraphs = extract_paragraphs_from_docx(docx_file)
        combined_audio = AudioSegment.empty()
        temp_files = []

        try:
            for idx, para in enumerate(paragraphs):
              tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
              model.tts_to_file(text=para, speaker="p"+speaker_id, file_path=tmp.name)
              audio_chunk = AudioSegment.from_wav(tmp.name)
              combined_audio += audio_chunk
              temp_files.append(tmp.name)
              tmp.close()

        except Exception as e:
            print("Generation interrupted. Saving partial output.", e)

        output_dir = tempfile.mkdtemp()
        final_output_path = os.path.join(output_dir, "final_output.wav")
        combined_audio.export(final_output_path, format="wav")
        zip_path = os.path.join(output_dir, "output.zip")
        with zipfile.ZipFile(zip_path, 'w') as zipf:
        zipf.write(final_output_path, arcname="final_output.wav")

        for f in temp_files:
          os.remove(f)

    return zip_path

# --- UI ---
speaker_choices = list_speaker_choices()

with gr.Blocks() as demo:
    gr.Markdown("## 📄 TTS Voice Generator with Paragraph-Wise Processing")

    with gr.Row():
        speaker_dropdown = gr.Dropdown(label="Select Voice", choices=speaker_choices)


    with gr.Row():
        sample_textbox = gr.Textbox(label="Enter Sample Text (Max 500 characters)", max_lines=5)
        sample_button = gr.Button("Generate Sample")
        clear_button = gr.Button("Clear Sample")

    tts_engine_dropdown = gr.Dropdown(label="TTS Engine", choices=["Coqui (XTTS)", "Bark"], value="Coqui (XTTS)")


    sample_audio = gr.Audio(label="Sample Output", type="filepath")

    sample_button.click(
    fn=generate_sample_audio,
    inputs=[sample_textbox, speaker_dropdown, tts_engine_dropdown],
    outputs=[sample_audio]
)
    clear_button.click(fn=lambda: None, inputs=[], outputs=[sample_audio])

    with gr.Row():
        docx_input = gr.File(label="Upload DOCX File", file_types=[".docx"])
        generate_button = gr.Button("Generate Full Audio")
        download_output = gr.File(label="Download Output Zip")

    generate_button.click(
    fn=generate_audio,
    inputs=[docx_input, speaker_dropdown, tts_engine_dropdown],
    outputs=[download_output]
)

if __name__ == "__main__":
    demo.launch()