File size: 9,019 Bytes
9e3182d
 
 
235e7c7
bebc496
9e3182d
68f40ec
bebc496
b9d2659
235e7c7
 
c849c89
9e3182d
 
 
 
6e7a5e3
9e3182d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235e7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e3182d
6ee4112
235e7c7
 
 
 
 
 
 
 
 
 
 
 
6ee4112
235e7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d2659
235e7c7
 
 
 
 
b9d2659
235e7c7
 
 
b9d2659
a5f420b
 
b9d2659
235e7c7
 
 
b9d2659
235e7c7
b9d2659
a5f420b
235e7c7
b9bf9b2
9e3182d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
os.environ["NUMBA_DISABLE_CACHE"] = "1"

import os
import gradio as gr
from docx import Document
from TTS.api import TTS
import tempfile
import zipfile
from io import BytesIO
import re

# Voice model
VOICE_MODEL = "tts_models/en/vctk/vits"

# Embedded metadata (from your file)
SPEAKER_METADATA = {
	    300: { "age": 23, "gender": "F", "accent": "American"},
	    271: { "age": 19, "gender": "M", "accent": "Scottish"},
	    287: { "age": 23, "gender": "M", "accent": "English"},
	    262: { "age": 23, "gender": "F", "accent": "Scottish"},
	    284: { "age": 20, "gender": "M", "accent": "Scottish"},
	    297: { "age": 20, "gender": "F", "accent": "American"},
	    227: { "age": 38, "gender": "M", "accent": "English"},
	    246: { "age": 22, "gender": "M", "accent": "Scottish"},
	    225: { "age": 23, "gender": "F", "accent": "English"},
	    259: { "age": 23, "gender": "M", "accent": "English"},
	    252: { "age": 22, "gender": "M", "accent": "Scottish"},
	    231: { "age": 23, "gender": "F", "accent": "English"},
	    266: { "age": 22, "gender": "F", "accent": "Irish"},
	    241: { "age": 21, "gender": "M", "accent": "Scottish"},
	    312: { "age": 19, "gender": "F", "accent": "Canadian"},
	    329: { "age": 23, "gender": "F", "accent": "American"},
	    232: { "age": 23, "gender": "M", "accent": "English"},
	    305: { "age": 19, "gender": "F", "accent": "American"},
	    311: { "age": 21, "gender": "M", "accent": "American"},
	    301: { "age": 23, "gender": "F", "accent": "American"},
	    304: { "age": 22, "gender": "M", "accent": "NorthernIrish"},
	    310: { "age": 21, "gender": "F", "accent": "American"},
	    260: { "age": 21, "gender": "M", "accent": "Scottish"},
	    315: { "age": 18, "gender": "M", "accent": "American"},
	    374: { "age": 28, "gender": "M", "accent": "Australian"},
	    364: { "age": 23, "gender": "M", "accent": "Irish"},
	    269: { "age": 20, "gender": "F", "accent": "English"},
	    345: { "age": 22, "gender": "M", "accent": "American"},
	    326: { "age": 26, "gender": "M", "accent": "Australian"},
	    343: { "age": 27, "gender": "F", "accent": "Canadian"},
	    230: { "age": 22, "gender": "F", "accent": "English"},
	    376: { "age": 22, "gender": "M", "accent": "Indian"},
	    240: { "age": 21, "gender": "F", "accent": "English"},
	    298: { "age": 19, "gender": "M", "accent": "Irish"},
	    272: { "age": 23, "gender": "M", "accent": "Scottish"},
	    248: { "age": 23, "gender": "F", "accent": "Indian"},
	    264: { "age": 23, "gender": "F", "accent": "Scottish"},
	    250: { "age": 22, "gender": "F", "accent": "English"},
	    292: { "age": 23, "gender": "M", "accent": "NorthernIrish"},
	    237: { "age": 22, "gender": "M", "accent": "Scottish"},
	    363: { "age": 22, "gender": "M", "accent": "Canadian"},
	    313: { "age": 24, "gender": "F", "accent": "Irish"},
	    285: { "age": 21, "gender": "M", "accent": "Scottish"},
	    268: { "age": 23, "gender": "F", "accent": "English"},
	    302: { "age": 20, "gender": "M", "accent": "Canadian"},
	    261: { "age": 26, "gender": "F", "accent": "NorthernIrish"},
	    336: { "age": 18, "gender": "F", "accent": "SouthAfrican"},
	    288: { "age": 22, "gender": "F", "accent": "Irish"},
	    226: { "age": 22, "gender": "M", "accent": "English"},
	    277: { "age": 23, "gender": "F", "accent": "English"},
	    360: { "age": 19, "gender": "M", "accent": "American"},
	    257: { "age": 24, "gender": "F", "accent": "English"},
	    254: { "age": 21, "gender": "M", "accent": "English"},
	    339: { "age": 21, "gender": "F", "accent": "American"},
	    323: { "age": 19, "gender": "F", "accent": "SouthAfrican"},
	    255: { "age": 19, "gender": "M", "accent": "Scottish"},
	    249: { "age": 22, "gender": "F", "accent": "Scottish"},
	    293: { "age": 22, "gender": "F", "accent": "NorthernIrish"},
	    244: { "age": 22, "gender": "F", "accent": "English"},
	    245: { "age": 25, "gender": "M", "accent": "Irish"},
	    361: { "age": 19, "gender": "F", "accent": "American"},
	    314: { "age": 26, "gender": "F", "accent": "SouthAfrican"},
	    308: { "age": 18, "gender": "F", "accent": "American"},
	    229: { "age": 23, "gender": "F", "accent": "English"},
	    341: { "age": 26, "gender": "F", "accent": "American"},
	    275: { "age": 23, "gender": "M", "accent": "Scottish"},
	    263: { "age": 22, "gender": "M", "accent": "Scottish"},
	    253: { "age": 22, "gender": "F", "accent": "Welsh"},
	    299: { "age": 25, "gender": "F", "accent": "American"},
	    316: { "age": 20, "gender": "M", "accent": "Canadian"},
	    282: { "age": 23, "gender": "F", "accent": "English"},
	    362: { "age": 29, "gender": "F", "accent": "American"},
	    294: { "age": 33, "gender": "F", "accent": "American"},
	    274: { "age": 22, "gender": "M", "accent": "English"},
	    279: { "age": 23, "gender": "M", "accent": "English"},
	    281: { "age": 29, "gender": "M", "accent": "Scottish"},
	    286: { "age": 23, "gender": "M", "accent": "English"},
	    258: { "age": 22, "gender": "M", "accent": "English"},
	    247: { "age": 22, "gender": "M", "accent": "Scottish"},
	    351: { "age": 21, "gender": "F", "accent": "NorthernIrish"},
	    283: { "age": 24, "gender": "F", "accent": "Irish"},
	    334: { "age": 18, "gender": "M", "accent": "American"},
	    333: { "age": 19, "gender": "F", "accent": "American"},
	    295: { "age": 23, "gender": "F", "accent": "Irish"},
	    330: { "age": 26, "gender": "F", "accent": "American"},
	    335: { "age": 25, "gender": "F", "accent": "NewZealand"},
	    228: { "age": 22, "gender": "F", "accent": "English"},
	    267: { "age": 23, "gender": "F", "accent": "English"},
	    273: { "age": 18, "gender": "F", "accent": "English"}
	}



# Static list of speakers for dropdown
SPEAKER_CHOICES = [
    f"{sid} - {data['gender']} - {data['accent']} (Age {data['age']})"
    for sid, data in SPEAKER_METADATA.items()
]

# VCTK model (multi-speaker)
MODEL_NAME = "tts_models/en/vctk/vits"
tts = TTS(model_name=MODEL_NAME, progress_bar=False, gpu=False)

# Extract plain text from docx, ignoring hyperlinks
def extract_text_ignoring_hyperlinks(docx_file):
    doc = Document(docx_file.name)
    text_blocks = []
    for para in doc.paragraphs:
        # Remove hyperlinks using regex or by inspecting runs
        if para.text.strip():
            clean_text = re.sub(r'https?://\S+', '', para.text)
            text_blocks.append(clean_text.strip())
    return text_blocks

# Generate sample audio for preview
def generate_sample_audio(sample_text, selected_speaker):
    if not sample_text.strip():
        raise gr.Error("Sample text cannot be empty.")
    sid = selected_speaker.split(" ")[0]  # Extract speaker ID
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
        tts.tts_to_file(text=sample_text, speaker="p"+sid, file_path=tmp_wav.name)
        return tmp_wav.name

# Main conversion function
def docx_to_zipped_wavs(doc_file, selected_speaker):
    sid = selected_speaker.split(" ")[0]
    paragraphs = extract_text_ignoring_hyperlinks(doc_file)
    audio_files = []
    try:
        for i, para in enumerate(paragraphs):
            if not para:
                continue
            with tempfile.NamedTemporaryFile(suffix=f"_{i}.wav", delete=False) as tmp_wav:
                tts.tts_to_file(text=para, speaker="p"+sid, file_path=tmp_wav.name)
                audio_files.append(tmp_wav.name)
    except Exception as e:
        print("Connection interrupted, returning partial result.", str(e))

    # Zip the results
    zip_buffer = BytesIO()
    with zipfile.ZipFile(zip_buffer, "w") as zipf:
        for wav_path in audio_files:
            zipf.write(wav_path, arcname=os.path.basename(wav_path))
    zip_buffer.seek(0)

    # Save the zip temporarily for download
    final_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
    final_zip.write(zip_buffer.read())
    final_zip.close()
    return final_zip.name

# Gradio UI
with gr.Blocks() as interface:
    gr.Markdown("""# Multi-Paragraph Voiceover Generator
Upload a `.docx` file and convert each paragraph to audio. You can also try a short sample first.
""")

    with gr.Row():
        sample_text = gr.Textbox(label="Sample Text (Max 500 chars)", max_lines=4, lines=3, max_length=500)
        speaker_dropdown = gr.Dropdown(label="Select Speaker", choices=SPEAKER_CHOICES, value=SPEAKER_CHOICES[0])

    # sample_button = gr.Button("Generate Sample Audio")
    # sample_audio = gr.Audio(label="Sample Audio", type="filepath")

    with gr.Row():
        docx_input = gr.File(label="Upload .docx File", type="filepath")
        convert_button = gr.Button("Generate WAV Zip")

    final_output = gr.File(label="Download ZIP of WAVs")

    # sample_button.click(fn=generate_sample_audio, inputs=[sample_text, speaker_dropdown], outputs=sample_audio)
    convert_button.click(fn=docx_to_zipped_wavs, inputs=[docx_input, speaker_dropdown], outputs=final_output)

if __name__ == "__main__":
    interface.launch()