File size: 9,321 Bytes
9e3182d
 
 
235e7c7
bebc496
9e3182d
68f40ec
bebc496
b9d2659
235e7c7
 
c849c89
8fd86b6
 
 
 
f2fdc48
 
 
 
 
8fd86b6
9e3182d
 
 
 
6e7a5e3
9e3182d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2fdc48
 
a50e211
 
 
 
 
 
 
f2fdc48
a50e211
 
b3721bb
9e3182d
8fd86b6
a50e211
8fd86b6
9e3182d
a50e211
 
8fd86b6
a50e211
 
 
 
 
 
b3721bb
a50e211
 
 
 
 
 
 
 
 
 
 
f2fdc48
a50e211
 
 
 
 
 
 
 
 
 
 
 
92eba2d
a50e211
96c6f9a
a50e211
 
 
f2fdc48
a50e211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd86b6
b9bf9b2
9e3182d
8fd86b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
os.environ["NUMBA_DISABLE_CACHE"] = "1"

import os
import gradio as gr
from docx import Document
from TTS.api import TTS
import tempfile
import zipfile
from io import BytesIO
import re

from pydub import AudioSegment

final_audio = AudioSegment.empty()

from pydub import AudioSegment
from bark import generate_audio  # Importing Bark




# Voice model
VOICE_MODEL = "tts_models/en/vctk/vits"

# Embedded metadata (from your file)
SPEAKER_METADATA = {
	    300: { "age": 23, "gender": "F", "accent": "American"},
	    271: { "age": 19, "gender": "M", "accent": "Scottish"},
	    287: { "age": 23, "gender": "M", "accent": "English"},
	    262: { "age": 23, "gender": "F", "accent": "Scottish"},
	    284: { "age": 20, "gender": "M", "accent": "Scottish"},
	    297: { "age": 20, "gender": "F", "accent": "American"},
	    227: { "age": 38, "gender": "M", "accent": "English"},
	    246: { "age": 22, "gender": "M", "accent": "Scottish"},
	    225: { "age": 23, "gender": "F", "accent": "English"},
	    259: { "age": 23, "gender": "M", "accent": "English"},
	    252: { "age": 22, "gender": "M", "accent": "Scottish"},
	    231: { "age": 23, "gender": "F", "accent": "English"},
	    266: { "age": 22, "gender": "F", "accent": "Irish"},
	    241: { "age": 21, "gender": "M", "accent": "Scottish"},
	    312: { "age": 19, "gender": "F", "accent": "Canadian"},
	    329: { "age": 23, "gender": "F", "accent": "American"},
	    232: { "age": 23, "gender": "M", "accent": "English"},
	    305: { "age": 19, "gender": "F", "accent": "American"},
	    311: { "age": 21, "gender": "M", "accent": "American"},
	    301: { "age": 23, "gender": "F", "accent": "American"},
	    304: { "age": 22, "gender": "M", "accent": "NorthernIrish"},
	    310: { "age": 21, "gender": "F", "accent": "American"},
	    260: { "age": 21, "gender": "M", "accent": "Scottish"},
	    315: { "age": 18, "gender": "M", "accent": "American"},
	    374: { "age": 28, "gender": "M", "accent": "Australian"},
	    364: { "age": 23, "gender": "M", "accent": "Irish"},
	    269: { "age": 20, "gender": "F", "accent": "English"},
	    345: { "age": 22, "gender": "M", "accent": "American"},
	    326: { "age": 26, "gender": "M", "accent": "Australian"},
	    343: { "age": 27, "gender": "F", "accent": "Canadian"},
	    230: { "age": 22, "gender": "F", "accent": "English"},
	    376: { "age": 22, "gender": "M", "accent": "Indian"},
	    240: { "age": 21, "gender": "F", "accent": "English"},
	    298: { "age": 19, "gender": "M", "accent": "Irish"},
	    272: { "age": 23, "gender": "M", "accent": "Scottish"},
	    248: { "age": 23, "gender": "F", "accent": "Indian"},
	    264: { "age": 23, "gender": "F", "accent": "Scottish"},
	    250: { "age": 22, "gender": "F", "accent": "English"},
	    292: { "age": 23, "gender": "M", "accent": "NorthernIrish"},
	    237: { "age": 22, "gender": "M", "accent": "Scottish"},
	    363: { "age": 22, "gender": "M", "accent": "Canadian"},
	    313: { "age": 24, "gender": "F", "accent": "Irish"},
	    285: { "age": 21, "gender": "M", "accent": "Scottish"},
	    268: { "age": 23, "gender": "F", "accent": "English"},
	    302: { "age": 20, "gender": "M", "accent": "Canadian"},
	    261: { "age": 26, "gender": "F", "accent": "NorthernIrish"},
	    336: { "age": 18, "gender": "F", "accent": "SouthAfrican"},
	    288: { "age": 22, "gender": "F", "accent": "Irish"},
	    226: { "age": 22, "gender": "M", "accent": "English"},
	    277: { "age": 23, "gender": "F", "accent": "English"},
	    360: { "age": 19, "gender": "M", "accent": "American"},
	    257: { "age": 24, "gender": "F", "accent": "English"},
	    254: { "age": 21, "gender": "M", "accent": "English"},
	    339: { "age": 21, "gender": "F", "accent": "American"},
	    323: { "age": 19, "gender": "F", "accent": "SouthAfrican"},
	    255: { "age": 19, "gender": "M", "accent": "Scottish"},
	    249: { "age": 22, "gender": "F", "accent": "Scottish"},
	    293: { "age": 22, "gender": "F", "accent": "NorthernIrish"},
	    244: { "age": 22, "gender": "F", "accent": "English"},
	    245: { "age": 25, "gender": "M", "accent": "Irish"},
	    361: { "age": 19, "gender": "F", "accent": "American"},
	    314: { "age": 26, "gender": "F", "accent": "SouthAfrican"},
	    308: { "age": 18, "gender": "F", "accent": "American"},
	    229: { "age": 23, "gender": "F", "accent": "English"},
	    341: { "age": 26, "gender": "F", "accent": "American"},
	    275: { "age": 23, "gender": "M", "accent": "Scottish"},
	    263: { "age": 22, "gender": "M", "accent": "Scottish"},
	    253: { "age": 22, "gender": "F", "accent": "Welsh"},
	    299: { "age": 25, "gender": "F", "accent": "American"},
	    316: { "age": 20, "gender": "M", "accent": "Canadian"},
	    282: { "age": 23, "gender": "F", "accent": "English"},
	    362: { "age": 29, "gender": "F", "accent": "American"},
	    294: { "age": 33, "gender": "F", "accent": "American"},
	    274: { "age": 22, "gender": "M", "accent": "English"},
	    279: { "age": 23, "gender": "M", "accent": "English"},
	    281: { "age": 29, "gender": "M", "accent": "Scottish"},
	    286: { "age": 23, "gender": "M", "accent": "English"},
	    258: { "age": 22, "gender": "M", "accent": "English"},
	    247: { "age": 22, "gender": "M", "accent": "Scottish"},
	    351: { "age": 21, "gender": "F", "accent": "NorthernIrish"},
	    283: { "age": 24, "gender": "F", "accent": "Irish"},
	    334: { "age": 18, "gender": "M", "accent": "American"},
	    333: { "age": 19, "gender": "F", "accent": "American"},
	    295: { "age": 23, "gender": "F", "accent": "Irish"},
	    330: { "age": 26, "gender": "F", "accent": "American"},
	    335: { "age": 25, "gender": "F", "accent": "NewZealand"},
	    228: { "age": 22, "gender": "F", "accent": "English"},
	    267: { "age": 23, "gender": "F", "accent": "English"},
	    273: { "age": 18, "gender": "F", "accent": "English"}
	}



# Bark prompts (example)
BARK_PROMPTS = [
    "Shy girl",
    "Old man",
    "Excited child",
    "Angry woman"
]

def list_speaker_choices(metadata):
    """Helper function to list speakers from metadata (for VCTK and Coqui)"""
    return [f"Speaker {sid} | {meta['gender']} | {meta['accent']}" for sid, meta in SPEAKER_METADATA.items()]

def get_speaker_id_from_label(label):
    """Extract speaker ID from label string"""
    return label.split('|')[0].strip()

def generate_audio(sample_text, speaker_label, engine):
    """Generate audio based on engine choice"""
    speaker_id = get_speaker_id_from_label(speaker_label)
    model = None

    # Engine selection logic
    if engine == "bark":
        model = TTS("bark_model_path")  # Replace with actual path for Bark model
    elif engine == "coqui":
        model = TTS("tts_models/multilingual/multi-dataset/xtts_v2")  # Replace with actual path for Coqui model
    elif engine == "vctk":
        model = TTS(VOICE_MODEL)  # Replace with actual path for VCTK model

    # Temporary file creation for output audio
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
        model.tts_to_file(text=sample_text, speaker="p"+speaker_id, file_path=tmp_wav.name)
        return tmp_wav.name

# --- UI Components ---
with gr.Blocks() as demo:
    gr.Markdown("## 📄 TTS Voice Generator with Multiple Engines")
    
    # Engine dropdown
    engine_dropdown = gr.Dropdown(
        label="Select TTS Engine", 
        choices=["bark", "coqui", "vctk"], 
        value="vctk"
    )

    # Speaker/Prompt dropdown (dynamic)
    speaker_dropdown = gr.Dropdown(label="Select Speaker", visible=False)
    prompt_dropdown = gr.Dropdown(label="Select Prompt", visible=False)

    # Sample text box
    sample_textbox = gr.Textbox(label="Enter Sample Text (Max 500 characters)", max_lines=5)
    sample_audio = gr.Audio(label="Sample Output Audio", type="filepath")
    
    # Define metadata choices for speakers (Coqui and VCTK)
    speaker_choices_vctk_coqui = list_speaker_choices(SPEAKER_METADATA)
    speaker_dropdown.choices = speaker_choices_vctk_coqui  # Use metadata for VCTK/Coqui speakers

    # Define Bark prompts (choose from predefined prompts)
    prompt_dropdown.choices = BARK_PROMPTS
    
    # Dynamically update dropdown visibility based on engine selection
    def update_dropdowns(engine):
        if engine == "bark":
            speaker_dropdown.visible = False
            prompt_dropdown.visible = True
        elif engine == "coqui" or engine == "vctk":
            speaker_dropdown.visible = True
            prompt_dropdown.visible = False
        return gr.update(visible=speaker_dropdown.visible), gr.update(visible=prompt_dropdown.visible)

    # Trigger dropdown visibility changes
    engine_dropdown.change(update_dropdowns, inputs=engine_dropdown, outputs=[speaker_dropdown, prompt_dropdown])

    # Button to generate audio from sample text
    generate_button = gr.Button("Generate Audio")
    generate_button.click(
        fn=generate_audio, 
        inputs=[sample_textbox, speaker_dropdown, engine_dropdown], 
        outputs=[sample_audio]
    )

    # Button to clear the sample text and audio
    def clear_sample():
        return "", None

    clear_button = gr.Button("Clear")
    clear_button.click(fn=clear_sample, inputs=[], outputs=[sample_textbox, sample_audio])


if __name__ == "__main__":
    demo.launch()