Spaces:
Sleeping
Sleeping
File size: 9,321 Bytes
9e3182d 235e7c7 bebc496 9e3182d 68f40ec bebc496 b9d2659 235e7c7 c849c89 8fd86b6 f2fdc48 8fd86b6 9e3182d 6e7a5e3 9e3182d f2fdc48 a50e211 f2fdc48 a50e211 b3721bb 9e3182d 8fd86b6 a50e211 8fd86b6 9e3182d a50e211 8fd86b6 a50e211 b3721bb a50e211 f2fdc48 a50e211 92eba2d a50e211 96c6f9a a50e211 f2fdc48 a50e211 8fd86b6 b9bf9b2 9e3182d 8fd86b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
os.environ["NUMBA_DISABLE_CACHE"] = "1"
import os
import gradio as gr
from docx import Document
from TTS.api import TTS
import tempfile
import zipfile
from io import BytesIO
import re
from pydub import AudioSegment
final_audio = AudioSegment.empty()
from pydub import AudioSegment
from bark import generate_audio # Importing Bark
# Voice model
VOICE_MODEL = "tts_models/en/vctk/vits"
# Embedded metadata (from your file)
SPEAKER_METADATA = {
300: { "age": 23, "gender": "F", "accent": "American"},
271: { "age": 19, "gender": "M", "accent": "Scottish"},
287: { "age": 23, "gender": "M", "accent": "English"},
262: { "age": 23, "gender": "F", "accent": "Scottish"},
284: { "age": 20, "gender": "M", "accent": "Scottish"},
297: { "age": 20, "gender": "F", "accent": "American"},
227: { "age": 38, "gender": "M", "accent": "English"},
246: { "age": 22, "gender": "M", "accent": "Scottish"},
225: { "age": 23, "gender": "F", "accent": "English"},
259: { "age": 23, "gender": "M", "accent": "English"},
252: { "age": 22, "gender": "M", "accent": "Scottish"},
231: { "age": 23, "gender": "F", "accent": "English"},
266: { "age": 22, "gender": "F", "accent": "Irish"},
241: { "age": 21, "gender": "M", "accent": "Scottish"},
312: { "age": 19, "gender": "F", "accent": "Canadian"},
329: { "age": 23, "gender": "F", "accent": "American"},
232: { "age": 23, "gender": "M", "accent": "English"},
305: { "age": 19, "gender": "F", "accent": "American"},
311: { "age": 21, "gender": "M", "accent": "American"},
301: { "age": 23, "gender": "F", "accent": "American"},
304: { "age": 22, "gender": "M", "accent": "NorthernIrish"},
310: { "age": 21, "gender": "F", "accent": "American"},
260: { "age": 21, "gender": "M", "accent": "Scottish"},
315: { "age": 18, "gender": "M", "accent": "American"},
374: { "age": 28, "gender": "M", "accent": "Australian"},
364: { "age": 23, "gender": "M", "accent": "Irish"},
269: { "age": 20, "gender": "F", "accent": "English"},
345: { "age": 22, "gender": "M", "accent": "American"},
326: { "age": 26, "gender": "M", "accent": "Australian"},
343: { "age": 27, "gender": "F", "accent": "Canadian"},
230: { "age": 22, "gender": "F", "accent": "English"},
376: { "age": 22, "gender": "M", "accent": "Indian"},
240: { "age": 21, "gender": "F", "accent": "English"},
298: { "age": 19, "gender": "M", "accent": "Irish"},
272: { "age": 23, "gender": "M", "accent": "Scottish"},
248: { "age": 23, "gender": "F", "accent": "Indian"},
264: { "age": 23, "gender": "F", "accent": "Scottish"},
250: { "age": 22, "gender": "F", "accent": "English"},
292: { "age": 23, "gender": "M", "accent": "NorthernIrish"},
237: { "age": 22, "gender": "M", "accent": "Scottish"},
363: { "age": 22, "gender": "M", "accent": "Canadian"},
313: { "age": 24, "gender": "F", "accent": "Irish"},
285: { "age": 21, "gender": "M", "accent": "Scottish"},
268: { "age": 23, "gender": "F", "accent": "English"},
302: { "age": 20, "gender": "M", "accent": "Canadian"},
261: { "age": 26, "gender": "F", "accent": "NorthernIrish"},
336: { "age": 18, "gender": "F", "accent": "SouthAfrican"},
288: { "age": 22, "gender": "F", "accent": "Irish"},
226: { "age": 22, "gender": "M", "accent": "English"},
277: { "age": 23, "gender": "F", "accent": "English"},
360: { "age": 19, "gender": "M", "accent": "American"},
257: { "age": 24, "gender": "F", "accent": "English"},
254: { "age": 21, "gender": "M", "accent": "English"},
339: { "age": 21, "gender": "F", "accent": "American"},
323: { "age": 19, "gender": "F", "accent": "SouthAfrican"},
255: { "age": 19, "gender": "M", "accent": "Scottish"},
249: { "age": 22, "gender": "F", "accent": "Scottish"},
293: { "age": 22, "gender": "F", "accent": "NorthernIrish"},
244: { "age": 22, "gender": "F", "accent": "English"},
245: { "age": 25, "gender": "M", "accent": "Irish"},
361: { "age": 19, "gender": "F", "accent": "American"},
314: { "age": 26, "gender": "F", "accent": "SouthAfrican"},
308: { "age": 18, "gender": "F", "accent": "American"},
229: { "age": 23, "gender": "F", "accent": "English"},
341: { "age": 26, "gender": "F", "accent": "American"},
275: { "age": 23, "gender": "M", "accent": "Scottish"},
263: { "age": 22, "gender": "M", "accent": "Scottish"},
253: { "age": 22, "gender": "F", "accent": "Welsh"},
299: { "age": 25, "gender": "F", "accent": "American"},
316: { "age": 20, "gender": "M", "accent": "Canadian"},
282: { "age": 23, "gender": "F", "accent": "English"},
362: { "age": 29, "gender": "F", "accent": "American"},
294: { "age": 33, "gender": "F", "accent": "American"},
274: { "age": 22, "gender": "M", "accent": "English"},
279: { "age": 23, "gender": "M", "accent": "English"},
281: { "age": 29, "gender": "M", "accent": "Scottish"},
286: { "age": 23, "gender": "M", "accent": "English"},
258: { "age": 22, "gender": "M", "accent": "English"},
247: { "age": 22, "gender": "M", "accent": "Scottish"},
351: { "age": 21, "gender": "F", "accent": "NorthernIrish"},
283: { "age": 24, "gender": "F", "accent": "Irish"},
334: { "age": 18, "gender": "M", "accent": "American"},
333: { "age": 19, "gender": "F", "accent": "American"},
295: { "age": 23, "gender": "F", "accent": "Irish"},
330: { "age": 26, "gender": "F", "accent": "American"},
335: { "age": 25, "gender": "F", "accent": "NewZealand"},
228: { "age": 22, "gender": "F", "accent": "English"},
267: { "age": 23, "gender": "F", "accent": "English"},
273: { "age": 18, "gender": "F", "accent": "English"}
}
# Bark prompts (example)
BARK_PROMPTS = [
"Shy girl",
"Old man",
"Excited child",
"Angry woman"
]
def list_speaker_choices(metadata):
"""Helper function to list speakers from metadata (for VCTK and Coqui)"""
return [f"Speaker {sid} | {meta['gender']} | {meta['accent']}" for sid, meta in SPEAKER_METADATA.items()]
def get_speaker_id_from_label(label):
"""Extract speaker ID from label string"""
return label.split('|')[0].strip()
def generate_audio(sample_text, speaker_label, engine):
"""Generate audio based on engine choice"""
speaker_id = get_speaker_id_from_label(speaker_label)
model = None
# Engine selection logic
if engine == "bark":
model = TTS("bark_model_path") # Replace with actual path for Bark model
elif engine == "coqui":
model = TTS("tts_models/multilingual/multi-dataset/xtts_v2") # Replace with actual path for Coqui model
elif engine == "vctk":
model = TTS(VOICE_MODEL) # Replace with actual path for VCTK model
# Temporary file creation for output audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
model.tts_to_file(text=sample_text, speaker="p"+speaker_id, file_path=tmp_wav.name)
return tmp_wav.name
# --- UI Components ---
with gr.Blocks() as demo:
gr.Markdown("## 📄 TTS Voice Generator with Multiple Engines")
# Engine dropdown
engine_dropdown = gr.Dropdown(
label="Select TTS Engine",
choices=["bark", "coqui", "vctk"],
value="vctk"
)
# Speaker/Prompt dropdown (dynamic)
speaker_dropdown = gr.Dropdown(label="Select Speaker", visible=False)
prompt_dropdown = gr.Dropdown(label="Select Prompt", visible=False)
# Sample text box
sample_textbox = gr.Textbox(label="Enter Sample Text (Max 500 characters)", max_lines=5)
sample_audio = gr.Audio(label="Sample Output Audio", type="filepath")
# Define metadata choices for speakers (Coqui and VCTK)
speaker_choices_vctk_coqui = list_speaker_choices(SPEAKER_METADATA)
speaker_dropdown.choices = speaker_choices_vctk_coqui # Use metadata for VCTK/Coqui speakers
# Define Bark prompts (choose from predefined prompts)
prompt_dropdown.choices = BARK_PROMPTS
# Dynamically update dropdown visibility based on engine selection
def update_dropdowns(engine):
if engine == "bark":
speaker_dropdown.visible = False
prompt_dropdown.visible = True
elif engine == "coqui" or engine == "vctk":
speaker_dropdown.visible = True
prompt_dropdown.visible = False
return gr.update(visible=speaker_dropdown.visible), gr.update(visible=prompt_dropdown.visible)
# Trigger dropdown visibility changes
engine_dropdown.change(update_dropdowns, inputs=engine_dropdown, outputs=[speaker_dropdown, prompt_dropdown])
# Button to generate audio from sample text
generate_button = gr.Button("Generate Audio")
generate_button.click(
fn=generate_audio,
inputs=[sample_textbox, speaker_dropdown, engine_dropdown],
outputs=[sample_audio]
)
# Button to clear the sample text and audio
def clear_sample():
return "", None
clear_button = gr.Button("Clear")
clear_button.click(fn=clear_sample, inputs=[], outputs=[sample_textbox, sample_audio])
if __name__ == "__main__":
demo.launch()
|