Spaces:
Sleeping
Sleeping
File size: 2,757 Bytes
a3e2313 bebc496 68f40ec bebc496 b9bf9b2 bebc496 152fe30 bebc496 152fe30 b9bf9b2 bebc496 68f40ec bebc496 e929cde bebc496 a3e2313 e929cde a3e2313 bebc496 68f40ec bebc496 b9bf9b2 a3e2313 68f40ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import os
os.environ["NUMBA_DISABLE_CACHE"] = "1"
import gradio as gr
from docx import Document
from TTS.api import TTS
import tempfile
# Available TTS models with descriptions
VOICE_MODELS = {
"Jenny (Expressive Female)": {
"model_name": "tts_models/en/jenny/jenny",
"multi_speaker": False
},
"LJSpeech (Standard Female)": {
"model_name": "tts_models/en/ljspeech/vits",
"multi_speaker": False
},
"VCTK (Multiple Speakers)": {
"model_name": "tts_models/en/vctk/vits",
"multi_speaker": True
}
}
# Cache to avoid reloading models
MODEL_CACHE = {}
def load_tts_model(model_key):
if model_key in MODEL_CACHE:
return MODEL_CACHE[model_key]
info = VOICE_MODELS[model_key]
tts = TTS(model_name=info["model_name"], progress_bar=False, gpu=False)
MODEL_CACHE[model_key] = tts
return tts
def extract_speakers(model_key):
info = VOICE_MODELS[model_key]
if info["multi_speaker"]:
tts = load_tts_model(model_key)
return list(tts.speakers)
return []
def docx_to_wav(doc_file, selected_voice, selected_speaker=None):
info = VOICE_MODELS[selected_voice]
tts = load_tts_model(selected_voice)
# Extract text from docx
document = Document(doc_file.name)
full_text = "\n".join([para.text for para in document.paragraphs if para.text.strip()])
# Save to WAV
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
wav_path = tmp_wav.name
kwargs = {}
if info["multi_speaker"]:
kwargs["speaker"] = selected_speaker
tts.tts_to_file(text=full_text, file_path=wav_path, **kwargs)
return wav_path
def update_speaker_dropdown(voice_selection):
speakers = extract_speakers(voice_selection)
return gr.Dropdown.update(choices=speakers, visible=bool(speakers), value=speakers[0] if speakers else None)
with gr.Blocks() as interface:
gr.Markdown("# Realistic Voiceover from DOCX\nUpload a .docx and choose a voice to generate a WAV audio.")
with gr.Row():
docx_input = gr.File(label="Upload .docx File", type="file")
voice_dropdown = gr.Dropdown(choices=list(VOICE_MODELS.keys()), value="Jenny (Expressive Female)", label="Voice")
speaker_dropdown = gr.Dropdown(choices=[], label="Speaker", visible=False)
generate_button = gr.Button("Generate Speech")
audio_output = gr.Audio(label="Download WAV", type="filepath")
voice_dropdown.change(fn=update_speaker_dropdown, inputs=voice_dropdown, outputs=speaker_dropdown)
generate_button.click(
fn=docx_to_wav,
inputs=[docx_input, voice_dropdown, speaker_dropdown],
outputs=audio_output
)
if __name__ == "__main__":
interface.launch()
|