|
import pickle
|
|
import os
|
|
import re
|
|
from g2p_en import G2p
|
|
|
|
from . import symbols
|
|
|
|
from .english_utils.abbreviations import expand_abbreviations
|
|
from .english_utils.time_norm import expand_time_english
|
|
from .english_utils.number_norm import normalize_numbers
|
|
from .japanese import distribute_phone
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
current_file_path = os.path.dirname(__file__)
|
|
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
|
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
|
|
_g2p = G2p()
|
|
|
|
arpa = {
|
|
"AH0",
|
|
"S",
|
|
"AH1",
|
|
"EY2",
|
|
"AE2",
|
|
"EH0",
|
|
"OW2",
|
|
"UH0",
|
|
"NG",
|
|
"B",
|
|
"G",
|
|
"AY0",
|
|
"M",
|
|
"AA0",
|
|
"F",
|
|
"AO0",
|
|
"ER2",
|
|
"UH1",
|
|
"IY1",
|
|
"AH2",
|
|
"DH",
|
|
"IY0",
|
|
"EY1",
|
|
"IH0",
|
|
"K",
|
|
"N",
|
|
"W",
|
|
"IY2",
|
|
"T",
|
|
"AA1",
|
|
"ER1",
|
|
"EH2",
|
|
"OY0",
|
|
"UH2",
|
|
"UW1",
|
|
"Z",
|
|
"AW2",
|
|
"AW1",
|
|
"V",
|
|
"UW2",
|
|
"AA2",
|
|
"ER",
|
|
"AW0",
|
|
"UW0",
|
|
"R",
|
|
"OW1",
|
|
"EH1",
|
|
"ZH",
|
|
"AE0",
|
|
"IH2",
|
|
"IH",
|
|
"Y",
|
|
"JH",
|
|
"P",
|
|
"AY1",
|
|
"EY0",
|
|
"OY2",
|
|
"TH",
|
|
"HH",
|
|
"D",
|
|
"ER0",
|
|
"CH",
|
|
"AO1",
|
|
"AE1",
|
|
"AO2",
|
|
"OY1",
|
|
"AY2",
|
|
"IH1",
|
|
"OW0",
|
|
"L",
|
|
"SH",
|
|
}
|
|
|
|
|
|
def post_replace_ph(ph):
|
|
rep_map = {
|
|
":": ",",
|
|
";": ",",
|
|
",": ",",
|
|
"。": ".",
|
|
"!": "!",
|
|
"?": "?",
|
|
"\n": ".",
|
|
"·": ",",
|
|
"、": ",",
|
|
"...": "…",
|
|
"v": "V",
|
|
}
|
|
if ph in rep_map.keys():
|
|
ph = rep_map[ph]
|
|
if ph in symbols:
|
|
return ph
|
|
if ph not in symbols:
|
|
ph = "UNK"
|
|
return ph
|
|
|
|
|
|
def read_dict():
|
|
g2p_dict = {}
|
|
start_line = 49
|
|
with open(CMU_DICT_PATH) as f:
|
|
line = f.readline()
|
|
line_index = 1
|
|
while line:
|
|
if line_index >= start_line:
|
|
line = line.strip()
|
|
word_split = line.split(" ")
|
|
word = word_split[0]
|
|
|
|
syllable_split = word_split[1].split(" - ")
|
|
g2p_dict[word] = []
|
|
for syllable in syllable_split:
|
|
phone_split = syllable.split(" ")
|
|
g2p_dict[word].append(phone_split)
|
|
|
|
line_index = line_index + 1
|
|
line = f.readline()
|
|
|
|
return g2p_dict
|
|
|
|
|
|
def cache_dict(g2p_dict, file_path):
|
|
with open(file_path, "wb") as pickle_file:
|
|
pickle.dump(g2p_dict, pickle_file)
|
|
|
|
|
|
def get_dict():
|
|
if os.path.exists(CACHE_PATH):
|
|
with open(CACHE_PATH, "rb") as pickle_file:
|
|
g2p_dict = pickle.load(pickle_file)
|
|
else:
|
|
g2p_dict = read_dict()
|
|
cache_dict(g2p_dict, CACHE_PATH)
|
|
|
|
return g2p_dict
|
|
|
|
|
|
eng_dict = get_dict()
|
|
|
|
|
|
def refine_ph(phn):
|
|
tone = 0
|
|
if re.search(r"\d$", phn):
|
|
tone = int(phn[-1]) + 1
|
|
phn = phn[:-1]
|
|
return phn.lower(), tone
|
|
|
|
|
|
def refine_syllables(syllables):
|
|
tones = []
|
|
phonemes = []
|
|
for phn_list in syllables:
|
|
for i in range(len(phn_list)):
|
|
phn = phn_list[i]
|
|
phn, tone = refine_ph(phn)
|
|
phonemes.append(phn)
|
|
tones.append(tone)
|
|
return phonemes, tones
|
|
|
|
|
|
def text_normalize(text):
|
|
text = text.lower()
|
|
text = expand_time_english(text)
|
|
text = normalize_numbers(text)
|
|
text = expand_abbreviations(text)
|
|
return text
|
|
|
|
model_id = 'bert-base-uncased'
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
def g2p_old(text):
|
|
tokenized = tokenizer.tokenize(text)
|
|
|
|
phones = []
|
|
tones = []
|
|
words = re.split(r"([,;.\-\?\!\s+])", text)
|
|
for w in words:
|
|
if w.upper() in eng_dict:
|
|
phns, tns = refine_syllables(eng_dict[w.upper()])
|
|
phones += phns
|
|
tones += tns
|
|
else:
|
|
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
|
for ph in phone_list:
|
|
if ph in arpa:
|
|
ph, tn = refine_ph(ph)
|
|
phones.append(ph)
|
|
tones.append(tn)
|
|
else:
|
|
phones.append(ph)
|
|
tones.append(0)
|
|
|
|
word2ph = [1 for i in phones]
|
|
|
|
phones = [post_replace_ph(i) for i in phones]
|
|
return phones, tones, word2ph
|
|
|
|
def g2p(text, pad_start_end=True, tokenized=None):
|
|
if tokenized is None:
|
|
tokenized = tokenizer.tokenize(text)
|
|
|
|
phs = []
|
|
ph_groups = []
|
|
for t in tokenized:
|
|
if not t.startswith("#"):
|
|
ph_groups.append([t])
|
|
else:
|
|
ph_groups[-1].append(t.replace("#", ""))
|
|
|
|
phones = []
|
|
tones = []
|
|
word2ph = []
|
|
for group in ph_groups:
|
|
w = "".join(group)
|
|
phone_len = 0
|
|
word_len = len(group)
|
|
if w.upper() in eng_dict:
|
|
phns, tns = refine_syllables(eng_dict[w.upper()])
|
|
phones += phns
|
|
tones += tns
|
|
phone_len += len(phns)
|
|
else:
|
|
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
|
for ph in phone_list:
|
|
if ph in arpa:
|
|
ph, tn = refine_ph(ph)
|
|
phones.append(ph)
|
|
tones.append(tn)
|
|
else:
|
|
phones.append(ph)
|
|
tones.append(0)
|
|
phone_len += 1
|
|
aaa = distribute_phone(phone_len, word_len)
|
|
word2ph += aaa
|
|
phones = [post_replace_ph(i) for i in phones]
|
|
|
|
if pad_start_end:
|
|
phones = ["_"] + phones + ["_"]
|
|
tones = [0] + tones + [0]
|
|
word2ph = [1] + word2ph + [1]
|
|
return phones, tones, word2ph
|
|
|
|
def get_bert_feature(text, word2ph, device=None):
|
|
from text import english_bert
|
|
|
|
return english_bert.get_bert_feature(text, word2ph, device=device)
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
from text.english_bert import get_bert_feature
|
|
text = "In this paper, we propose 1 DSPGAN, a N-F-T GAN-based universal vocoder."
|
|
text = text_normalize(text)
|
|
phones, tones, word2ph = g2p(text)
|
|
import pdb; pdb.set_trace()
|
|
bert = get_bert_feature(text, word2ph)
|
|
|
|
print(phones, tones, word2ph, bert.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|