|
import os
|
|
import glob
|
|
import argparse
|
|
import logging
|
|
import json
|
|
import subprocess
|
|
import numpy as np
|
|
from scipy.io.wavfile import read
|
|
import torch
|
|
import torchaudio
|
|
import librosa
|
|
from melo.text import cleaned_text_to_sequence, get_bert
|
|
from melo.text.cleaner import clean_text
|
|
from melo import commons
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
|
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
|
|
|
if hps.data.add_blank:
|
|
phone = commons.intersperse(phone, 0)
|
|
tone = commons.intersperse(tone, 0)
|
|
language = commons.intersperse(language, 0)
|
|
for i in range(len(word2ph)):
|
|
word2ph[i] = word2ph[i] * 2
|
|
word2ph[0] += 1
|
|
|
|
if getattr(hps.data, "disable_bert", False):
|
|
bert = torch.zeros(1024, len(phone))
|
|
ja_bert = torch.zeros(768, len(phone))
|
|
else:
|
|
bert = get_bert(norm_text, word2ph, language_str, device)
|
|
del word2ph
|
|
assert bert.shape[-1] == len(phone), phone
|
|
|
|
if language_str == "ZH":
|
|
bert = bert
|
|
ja_bert = torch.zeros(768, len(phone))
|
|
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
|
ja_bert = bert
|
|
bert = torch.zeros(1024, len(phone))
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
assert bert.shape[-1] == len(
|
|
phone
|
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
|
|
|
phone = torch.LongTensor(phone)
|
|
tone = torch.LongTensor(tone)
|
|
language = torch.LongTensor(language)
|
|
return bert, ja_bert, phone, tone, language
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
|
assert os.path.isfile(checkpoint_path)
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
|
iteration = checkpoint_dict.get("iteration", 0)
|
|
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
|
if (
|
|
optimizer is not None
|
|
and not skip_optimizer
|
|
and checkpoint_dict["optimizer"] is not None
|
|
):
|
|
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
|
elif optimizer is None and not skip_optimizer:
|
|
|
|
new_opt_dict = optimizer.state_dict()
|
|
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
|
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
|
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
|
optimizer.load_state_dict(new_opt_dict)
|
|
|
|
saved_state_dict = checkpoint_dict["model"]
|
|
if hasattr(model, "module"):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
|
|
new_state_dict = {}
|
|
for k, v in state_dict.items():
|
|
try:
|
|
|
|
new_state_dict[k] = saved_state_dict[k]
|
|
assert saved_state_dict[k].shape == v.shape, (
|
|
saved_state_dict[k].shape,
|
|
v.shape,
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
if "ja_bert_proj" in k:
|
|
v = torch.zeros_like(v)
|
|
logger.warn(
|
|
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
|
)
|
|
else:
|
|
logger.error(f"{k} is not in the checkpoint")
|
|
|
|
new_state_dict[k] = v
|
|
|
|
if hasattr(model, "module"):
|
|
model.module.load_state_dict(new_state_dict, strict=False)
|
|
else:
|
|
model.load_state_dict(new_state_dict, strict=False)
|
|
|
|
logger.info(
|
|
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
|
)
|
|
|
|
return model, optimizer, learning_rate, iteration
|
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
logger.info(
|
|
"Saving model and optimizer state at iteration {} to {}".format(
|
|
iteration, checkpoint_path
|
|
)
|
|
)
|
|
if hasattr(model, "module"):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
torch.save(
|
|
{
|
|
"model": state_dict,
|
|
"iteration": iteration,
|
|
"optimizer": optimizer.state_dict(),
|
|
"learning_rate": learning_rate,
|
|
},
|
|
checkpoint_path,
|
|
)
|
|
|
|
|
|
def summarize(
|
|
writer,
|
|
global_step,
|
|
scalars={},
|
|
histograms={},
|
|
images={},
|
|
audios={},
|
|
audio_sampling_rate=22050,
|
|
):
|
|
for k, v in scalars.items():
|
|
writer.add_scalar(k, v, global_step)
|
|
for k, v in histograms.items():
|
|
writer.add_histogram(k, v, global_step)
|
|
for k, v in images.items():
|
|
writer.add_image(k, v, global_step, dataformats="HWC")
|
|
for k, v in audios.items():
|
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
x = f_list[-1]
|
|
return x
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger("matplotlib")
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger("matplotlib")
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
im = ax.imshow(
|
|
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
|
)
|
|
fig.colorbar(im, ax=ax)
|
|
xlabel = "Decoder timestep"
|
|
if info is not None:
|
|
xlabel += "\n\n" + info
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel("Encoder timestep")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
|
|
|
|
|
def load_wav_to_torch_new(full_path):
|
|
audio_norm, sampling_rate = torchaudio.load(full_path, frame_offset=0, num_frames=-1, normalize=True, channels_first=True)
|
|
audio_norm = audio_norm.mean(dim=0)
|
|
return audio_norm, sampling_rate
|
|
|
|
def load_wav_to_torch_librosa(full_path, sr):
|
|
audio_norm, sampling_rate = librosa.load(full_path, sr=sr, mono=True)
|
|
return torch.FloatTensor(audio_norm.astype(np.float32)), sampling_rate
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding="utf-8") as f:
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
return filepaths_and_text
|
|
|
|
|
|
def get_hparams(init=True):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-c",
|
|
"--config",
|
|
type=str,
|
|
default="./configs/base.json",
|
|
help="JSON file for configuration",
|
|
)
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
parser.add_argument('--world-size', type=int, default=1)
|
|
parser.add_argument('--port', type=int, default=10000)
|
|
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
|
parser.add_argument('--pretrain_G', type=str, default=None,
|
|
help='pretrain model')
|
|
parser.add_argument('--pretrain_D', type=str, default=None,
|
|
help='pretrain model D')
|
|
parser.add_argument('--pretrain_dur', type=str, default=None,
|
|
help='pretrain model duration')
|
|
|
|
args = parser.parse_args()
|
|
model_dir = os.path.join("./logs", args.model)
|
|
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
|
|
config_path = args.config
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
if init:
|
|
with open(config_path, "r") as f:
|
|
data = f.read()
|
|
with open(config_save_path, "w") as f:
|
|
f.write(data)
|
|
else:
|
|
with open(config_save_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
hparams.pretrain_G = args.pretrain_G
|
|
hparams.pretrain_D = args.pretrain_D
|
|
hparams.pretrain_dur = args.pretrain_dur
|
|
hparams.port = args.port
|
|
return hparams
|
|
|
|
|
|
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
|
"""Freeing up space by deleting saved ckpts
|
|
|
|
Arguments:
|
|
path_to_models -- Path to the model directory
|
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
|
sort_by_time -- True -> chronologically delete ckpts
|
|
False -> lexicographically delete ckpts
|
|
"""
|
|
import re
|
|
|
|
ckpts_files = [
|
|
f
|
|
for f in os.listdir(path_to_models)
|
|
if os.path.isfile(os.path.join(path_to_models, f))
|
|
]
|
|
|
|
def name_key(_f):
|
|
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
|
|
|
def time_key(_f):
|
|
return os.path.getmtime(os.path.join(path_to_models, _f))
|
|
|
|
sort_key = time_key if sort_by_time else name_key
|
|
|
|
def x_sorted(_x):
|
|
return sorted(
|
|
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
|
key=sort_key,
|
|
)
|
|
|
|
to_del = [
|
|
os.path.join(path_to_models, fn)
|
|
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
|
]
|
|
|
|
def del_info(fn):
|
|
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
|
|
|
def del_routine(x):
|
|
return [os.remove(x), del_info(x)]
|
|
|
|
[del_routine(fn) for fn in to_del]
|
|
|
|
|
|
def get_hparams_from_dir(model_dir):
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
with open(config_save_path, "r", encoding="utf-8") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_file(config_path):
|
|
with open(config_path, "r", encoding="utf-8") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
return hparams
|
|
|
|
|
|
def check_git_hash(model_dir):
|
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
logger.warn(
|
|
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
|
source_dir
|
|
)
|
|
)
|
|
return
|
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
|
|
path = os.path.join(model_dir, "githash")
|
|
if os.path.exists(path):
|
|
saved_hash = open(path).read()
|
|
if saved_hash != cur_hash:
|
|
logger.warn(
|
|
"git hash values are different. {}(saved) != {}(current)".format(
|
|
saved_hash[:8], cur_hash[:8]
|
|
)
|
|
)
|
|
else:
|
|
open(path, "w").write(cur_hash)
|
|
|
|
|
|
def get_logger(model_dir, filename="train.log"):
|
|
global logger
|
|
logger = logging.getLogger(os.path.basename(model_dir))
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
h.setLevel(logging.DEBUG)
|
|
h.setFormatter(formatter)
|
|
logger.addHandler(h)
|
|
return logger
|
|
|
|
|
|
class HParams:
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if type(v) == dict:
|
|
v = HParams(**v)
|
|
self[k] = v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return setattr(self, key, value)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return self.__dict__.__repr__()
|
|
|