SohomToom commited on
Commit
ddbb7d4
·
verified ·
1 Parent(s): 2885476

Update MeloTTS/melo/text/cleaner.py

Browse files
Files changed (1) hide show
  1. MeloTTS/melo/text/cleaner.py +35 -35
MeloTTS/melo/text/cleaner.py CHANGED
@@ -1,36 +1,36 @@
1
- from . import chinese, japanese, english, chinese_mix, korean, french, spanish
2
- from . import cleaned_text_to_sequence
3
- import copy
4
-
5
- language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean,
6
- 'FR': french, 'SP': spanish, 'ES': spanish}
7
-
8
-
9
- def clean_text(text, language):
10
- language_module = language_module_map[language]
11
- norm_text = language_module.text_normalize(text)
12
- phones, tones, word2ph = language_module.g2p(norm_text)
13
- return norm_text, phones, tones, word2ph
14
-
15
-
16
- def clean_text_bert(text, language, device=None):
17
- language_module = language_module_map[language]
18
- norm_text = language_module.text_normalize(text)
19
- phones, tones, word2ph = language_module.g2p(norm_text)
20
-
21
- word2ph_bak = copy.deepcopy(word2ph)
22
- for i in range(len(word2ph)):
23
- word2ph[i] = word2ph[i] * 2
24
- word2ph[0] += 1
25
- bert = language_module.get_bert_feature(norm_text, word2ph, device=device)
26
-
27
- return norm_text, phones, tones, word2ph_bak, bert
28
-
29
-
30
- def text_to_sequence(text, language):
31
- norm_text, phones, tones, word2ph = clean_text(text, language)
32
- return cleaned_text_to_sequence(phones, tones, language)
33
-
34
-
35
- if __name__ == "__main__":
36
  pass
 
1
+ from . import english
2
+ from . import cleaned_text_to_sequence
3
+ import copy
4
+
5
+ language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean,
6
+ 'FR': french, 'SP': spanish, 'ES': spanish}
7
+
8
+
9
+ def clean_text(text, language):
10
+ language_module = language_module_map[language]
11
+ norm_text = language_module.text_normalize(text)
12
+ phones, tones, word2ph = language_module.g2p(norm_text)
13
+ return norm_text, phones, tones, word2ph
14
+
15
+
16
+ def clean_text_bert(text, language, device=None):
17
+ language_module = language_module_map[language]
18
+ norm_text = language_module.text_normalize(text)
19
+ phones, tones, word2ph = language_module.g2p(norm_text)
20
+
21
+ word2ph_bak = copy.deepcopy(word2ph)
22
+ for i in range(len(word2ph)):
23
+ word2ph[i] = word2ph[i] * 2
24
+ word2ph[0] += 1
25
+ bert = language_module.get_bert_feature(norm_text, word2ph, device=device)
26
+
27
+ return norm_text, phones, tones, word2ph_bak, bert
28
+
29
+
30
+ def text_to_sequence(text, language):
31
+ norm_text, phones, tones, word2ph = clean_text(text, language)
32
+ return cleaned_text_to_sequence(phones, tones, language)
33
+
34
+
35
+ if __name__ == "__main__":
36
  pass