Update MeloTTS/melo/text/cleaner.py
Browse files- MeloTTS/melo/text/cleaner.py +35 -35
MeloTTS/melo/text/cleaner.py
CHANGED
@@ -1,36 +1,36 @@
|
|
1 |
-
from . import
|
2 |
-
from . import cleaned_text_to_sequence
|
3 |
-
import copy
|
4 |
-
|
5 |
-
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean,
|
6 |
-
'FR': french, 'SP': spanish, 'ES': spanish}
|
7 |
-
|
8 |
-
|
9 |
-
def clean_text(text, language):
|
10 |
-
language_module = language_module_map[language]
|
11 |
-
norm_text = language_module.text_normalize(text)
|
12 |
-
phones, tones, word2ph = language_module.g2p(norm_text)
|
13 |
-
return norm_text, phones, tones, word2ph
|
14 |
-
|
15 |
-
|
16 |
-
def clean_text_bert(text, language, device=None):
|
17 |
-
language_module = language_module_map[language]
|
18 |
-
norm_text = language_module.text_normalize(text)
|
19 |
-
phones, tones, word2ph = language_module.g2p(norm_text)
|
20 |
-
|
21 |
-
word2ph_bak = copy.deepcopy(word2ph)
|
22 |
-
for i in range(len(word2ph)):
|
23 |
-
word2ph[i] = word2ph[i] * 2
|
24 |
-
word2ph[0] += 1
|
25 |
-
bert = language_module.get_bert_feature(norm_text, word2ph, device=device)
|
26 |
-
|
27 |
-
return norm_text, phones, tones, word2ph_bak, bert
|
28 |
-
|
29 |
-
|
30 |
-
def text_to_sequence(text, language):
|
31 |
-
norm_text, phones, tones, word2ph = clean_text(text, language)
|
32 |
-
return cleaned_text_to_sequence(phones, tones, language)
|
33 |
-
|
34 |
-
|
35 |
-
if __name__ == "__main__":
|
36 |
pass
|
|
|
1 |
+
from . import english
|
2 |
+
from . import cleaned_text_to_sequence
|
3 |
+
import copy
|
4 |
+
|
5 |
+
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean,
|
6 |
+
'FR': french, 'SP': spanish, 'ES': spanish}
|
7 |
+
|
8 |
+
|
9 |
+
def clean_text(text, language):
|
10 |
+
language_module = language_module_map[language]
|
11 |
+
norm_text = language_module.text_normalize(text)
|
12 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
13 |
+
return norm_text, phones, tones, word2ph
|
14 |
+
|
15 |
+
|
16 |
+
def clean_text_bert(text, language, device=None):
|
17 |
+
language_module = language_module_map[language]
|
18 |
+
norm_text = language_module.text_normalize(text)
|
19 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
20 |
+
|
21 |
+
word2ph_bak = copy.deepcopy(word2ph)
|
22 |
+
for i in range(len(word2ph)):
|
23 |
+
word2ph[i] = word2ph[i] * 2
|
24 |
+
word2ph[0] += 1
|
25 |
+
bert = language_module.get_bert_feature(norm_text, word2ph, device=device)
|
26 |
+
|
27 |
+
return norm_text, phones, tones, word2ph_bak, bert
|
28 |
+
|
29 |
+
|
30 |
+
def text_to_sequence(text, language):
|
31 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
32 |
+
return cleaned_text_to_sequence(phones, tones, language)
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
pass
|