Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import os
|
2 |
-
import uuid
|
3 |
-
import time
|
4 |
import torch
|
|
|
|
|
5 |
import gradio as gr
|
6 |
-
from
|
7 |
from openvoice.api import ToneColorConverter
|
8 |
|
9 |
-
# Set
|
10 |
os.environ["TORCH_HOME"] = "/tmp/torch"
|
|
|
|
|
|
|
11 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
12 |
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
13 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
@@ -15,53 +18,48 @@ os.environ["MPLCONFIGDIR"] = "/tmp"
|
|
15 |
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
16 |
os.environ["XDG_CONFIG_HOME"] = "/tmp"
|
17 |
os.environ["NUMBA_DISABLE_CACHE"] = "1"
|
18 |
-
os.makedirs("/tmp/torch", exist_ok=True)
|
19 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
20 |
os.makedirs("/tmp/flagged", exist_ok=True)
|
21 |
|
22 |
-
#
|
|
|
23 |
output_dir = "/tmp/outputs"
|
24 |
os.makedirs(output_dir, exist_ok=True)
|
25 |
|
26 |
-
# Initialize
|
27 |
-
ckpt_converter = "checkpoints/converter/config.json"
|
28 |
tone_color_converter = ToneColorConverter(ckpt_converter)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
|
33 |
def clone_and_speak(text, speaker_wav):
|
34 |
if not speaker_wav:
|
35 |
return "Please upload a reference .wav file."
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Use English speaker model
|
42 |
-
model = TTS(language="EN", device=device)
|
43 |
-
speaker_ids = model.hps.data.spk2id
|
44 |
-
default_speaker_id = next(iter(speaker_ids.values()))
|
45 |
-
|
46 |
-
# Generate base TTS voice
|
47 |
-
model.tts_to_file(text, default_speaker_id, tmp_melo_path)
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
#
|
54 |
tone_color_converter.convert(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
return
|
63 |
|
64 |
-
# Gradio interface
|
65 |
gr.Interface(
|
66 |
fn=clone_and_speak,
|
67 |
inputs=[
|
@@ -69,7 +67,7 @@ gr.Interface(
|
|
69 |
gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)")
|
70 |
],
|
71 |
outputs=gr.Audio(label="Synthesized Output"),
|
72 |
-
flagging_dir="/tmp/flagged",
|
73 |
-
title="Text to Voice using
|
74 |
-
description="
|
75 |
).launch()
|
|
|
1 |
import os
|
|
|
|
|
2 |
import torch
|
3 |
+
import time
|
4 |
+
import uuid
|
5 |
import gradio as gr
|
6 |
+
from openvoice import se_extractor
|
7 |
from openvoice.api import ToneColorConverter
|
8 |
|
9 |
+
# Set writable cache directory for torch
|
10 |
os.environ["TORCH_HOME"] = "/tmp/torch"
|
11 |
+
os.makedirs("/tmp/torch", exist_ok=True)
|
12 |
+
|
13 |
+
# Environment fixes for HF Spaces
|
14 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
15 |
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
16 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
|
|
18 |
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
19 |
os.environ["XDG_CONFIG_HOME"] = "/tmp"
|
20 |
os.environ["NUMBA_DISABLE_CACHE"] = "1"
|
|
|
21 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
22 |
os.makedirs("/tmp/flagged", exist_ok=True)
|
23 |
|
24 |
+
# Set model paths
|
25 |
+
ckpt_converter = "checkpoints/converter/config.json"
|
26 |
output_dir = "/tmp/outputs"
|
27 |
os.makedirs(output_dir, exist_ok=True)
|
28 |
|
29 |
+
# Initialize OpenVoice converter
|
|
|
30 |
tone_color_converter = ToneColorConverter(ckpt_converter)
|
31 |
|
32 |
+
# Speaker embedding cache
|
33 |
+
ref_speaker_embed = None
|
34 |
|
35 |
def clone_and_speak(text, speaker_wav):
|
36 |
if not speaker_wav:
|
37 |
return "Please upload a reference .wav file."
|
38 |
|
39 |
+
# Generate a unique filename
|
40 |
+
timestamp = str(int(time.time()))
|
41 |
+
base_name = f"output_{timestamp}_{uuid.uuid4().hex[:6]}"
|
42 |
+
output_wav = os.path.join(output_dir, f"{base_name}.wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Extract style from uploaded speaker voice
|
45 |
+
global ref_speaker_embed
|
46 |
+
ref_speaker_embed = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False)
|
47 |
|
48 |
+
# Generate speech using base model
|
49 |
tone_color_converter.convert(
|
50 |
+
text=text,
|
51 |
+
speaker_id="openvoice",
|
52 |
+
language="en",
|
53 |
+
ref_speaker=speaker_wav,
|
54 |
+
ref_embed=ref_speaker_embed,
|
55 |
+
output_path=output_wav,
|
56 |
+
top_k=10,
|
57 |
+
temperature=0.3
|
58 |
)
|
59 |
|
60 |
+
return output_wav
|
61 |
|
62 |
+
# Gradio interface (exposed as global `demo` for HF Spaces)
|
63 |
gr.Interface(
|
64 |
fn=clone_and_speak,
|
65 |
inputs=[
|
|
|
67 |
gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)")
|
68 |
],
|
69 |
outputs=gr.Audio(label="Synthesized Output"),
|
70 |
+
flagging_dir="/tmp/flagged", # safe temporary dir
|
71 |
+
title="Text to Voice using OpenVoice",
|
72 |
+
description="Clone any voice (English) and generate speech using OpenVoice on CPU.",
|
73 |
).launch()
|