# import os # import uuid # import time # import torch # import gradio as gr # os.environ["NUMBA_DISABLE_CACHE"] = "1" # import mecab_patch # import english_patch # from melo.api import TTS # from openvoice.api import ToneColorConverter # # Set temporary cache locations for Hugging Face Spaces # os.environ["TORCH_HOME"] = "/tmp/torch" # os.environ["HF_HOME"] = "/tmp/huggingface" # os.environ["HF_HUB_CACHE"] = "/tmp/huggingface" # os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" # os.environ["MPLCONFIGDIR"] = "/tmp" # os.environ["XDG_CACHE_HOME"] = "/tmp" # os.environ["XDG_CONFIG_HOME"] = "/tmp" # os.environ["NUMBA_DISABLE_CACHE"] = "1" # os.makedirs("/tmp/torch", exist_ok=True) # os.makedirs("/tmp/huggingface", exist_ok=True) # os.makedirs("/tmp/flagged", exist_ok=True) # # Output folder # output_dir = "/tmp/outputs" # os.makedirs(output_dir, exist_ok=True) # # Initialize tone converter # ckpt_converter = "checkpoints/converter/config.json" # tone_color_converter = ToneColorConverter(ckpt_converter) # # Device setting # device = "cuda" if torch.cuda.is_available() else "cpu" # def clone_and_speak(text, speaker_wav): # if not speaker_wav: # return "Please upload a reference .wav file." # # import melo.text.english as english # # original_g2p = english.g2p # # def patched_g2p(text): # # phones, tones, word2ph = original_g2p(text) # # # Fix: wrap ints in list to avoid TypeError # # word2ph_fixed = [] # # for item in word2ph: # # if isinstance(item, int): # # word2ph_fixed.append([item]) # # else: # # word2ph_fixed.append(item) # # return phones, tones, word2ph_fixed # # english.g2p = patched_g2p # base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}" # tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav" # final_output_path = f"{output_dir}/{base_name}_converted.wav" # # Use English speaker model # model = TTS(language="EN", device=device) # speaker_ids = model.hps.data.spk2id # default_speaker_id = next(iter(speaker_ids.values())) # # Generate base TTS voice # speed = 1.0 # model.tts_to_file(text, default_speaker_id, tmp_melo_path,speed=speed) # # Use speaker_wav as reference to extract style embedding # from openvoice import se_extractor # ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False) # # Run the tone conversion # tone_color_converter.convert( # audio_src_path=tmp_melo_path, # src_se=ref_se, # tgt_se=ref_se, # output_path=final_output_path, # message="@HuggingFace", # ) # return final_output_path # # Gradio interface # gr.Interface( # fn=clone_and_speak, # inputs=[ # gr.Textbox(label="Enter Text"), # gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)") # ], # outputs=gr.Audio(label="Synthesized Output"), # flagging_dir="/tmp/flagged", # title="Text to Voice using Melo TTS + OpenVoice", # description="Use Melo TTS for base synthesis and OpenVoice to apply a reference speaker's tone.", # ).launch() import os import time import uuid import gradio as gr from TTS.api import TTS from openvoice import se_extractor, ToneColorConverter # Import your local english.py logic from meloTTS import english # Paths device = "cuda" if os.system("nvidia-smi") == 0 else "cpu" output_dir = "outputs" os.makedirs(output_dir, exist_ok=True) # Load OpenVoice tone converter tone_color_converter = ToneColorConverter(f"{os.getcwd()}/checkpoints", device=device) tone_color_converter.load_model() def clone_and_speak(text, speaker_wav): if not speaker_wav: return "Please upload a reference .wav file." base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}" tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav" final_output_path = f"{output_dir}/{base_name}_converted.wav" # Use English speaker model model = TTS(language="EN", device=device) speaker_ids = model.hps.data.spk2id default_speaker_id = next(iter(speaker_ids.values())) # Generate base TTS voice model.tts_to_file(text, speaker_id=default_speaker_id, file_path=tmp_melo_path, speed=1.0) # Extract style embedding ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False) # Convert tone tone_color_converter.convert( audio_src_path=tmp_melo_path, src_se=ref_se, tgt_se=ref_se, output_path=final_output_path, message="@HuggingFace" ) return final_output_path # Gradio Interface demo = gr.Interface( fn=clone_and_speak, inputs=[ gr.Textbox(label="Text to Synthesize"), gr.Audio(label="Reference Voice (WAV)", type="filepath") ], outputs=gr.Audio(label="Cloned Voice Output"), title="Voice Cloner with MeloTTS + OpenVoice" ) if __name__ == "__main__": demo.launch()