Spaces:
Runtime error
Runtime error
Chris
commited on
Commit
·
775d1c1
1
Parent(s):
4049301
Getting the correct data out.
Browse files- .gitignore +2 -1
- =1.12 +6 -6
- app.py +43 -33
- mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192-0e67c616_20220913.pth +3 -0
- mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py +286 -0
.gitignore
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
bin
|
| 2 |
lib
|
| 3 |
output
|
| 4 |
-
share
|
|
|
|
|
|
| 1 |
bin
|
| 2 |
lib
|
| 3 |
output
|
| 4 |
+
share
|
| 5 |
+
input_img.jpg
|
=1.12
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
Requirement already satisfied: xtcocotools in ./lib/python3.10/site-packages (1.14.3)
|
| 2 |
-
Requirement already satisfied: cython>=0.27.3 in ./lib/python3.10/site-packages (from xtcocotools) (3.0.7)
|
| 3 |
-
Requirement already satisfied: numpy>=1.20.0 in ./lib/python3.10/site-packages (from xtcocotools) (1.23.0)
|
| 4 |
Requirement already satisfied: matplotlib>=2.1.0 in ./lib/python3.10/site-packages (from xtcocotools) (3.7.4)
|
| 5 |
Requirement already satisfied: setuptools>=18.0 in ./lib/python3.10/site-packages (from xtcocotools) (65.5.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
Requirement already satisfied: kiwisolver>=1.0.1 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.4.5)
|
| 7 |
Requirement already satisfied: cycler>=0.10 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (0.12.1)
|
|
|
|
| 8 |
Requirement already satisfied: contourpy>=1.0.1 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.2.0)
|
| 9 |
Requirement already satisfied: pillow>=6.2.0 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (9.4.0)
|
| 10 |
-
Requirement already satisfied: packaging>=20.0 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (23.2)
|
| 11 |
-
Requirement already satisfied: fonttools>=4.22.0 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (4.47.0)
|
| 12 |
-
Requirement already satisfied: python-dateutil>=2.7 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (2.8.2)
|
| 13 |
-
Requirement already satisfied: pyparsing>=2.3.1 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (2.4.5)
|
| 14 |
Requirement already satisfied: six>=1.5 in ./lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=2.1.0->xtcocotools) (1.16.0)
|
|
|
|
| 1 |
Requirement already satisfied: xtcocotools in ./lib/python3.10/site-packages (1.14.3)
|
|
|
|
|
|
|
| 2 |
Requirement already satisfied: matplotlib>=2.1.0 in ./lib/python3.10/site-packages (from xtcocotools) (3.7.4)
|
| 3 |
Requirement already satisfied: setuptools>=18.0 in ./lib/python3.10/site-packages (from xtcocotools) (65.5.0)
|
| 4 |
+
Requirement already satisfied: cython>=0.27.3 in ./lib/python3.10/site-packages (from xtcocotools) (3.0.7)
|
| 5 |
+
Requirement already satisfied: numpy>=1.20.0 in ./lib/python3.10/site-packages (from xtcocotools) (1.23.0)
|
| 6 |
+
Requirement already satisfied: fonttools>=4.22.0 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (4.47.0)
|
| 7 |
+
Requirement already satisfied: python-dateutil>=2.7 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (2.8.2)
|
| 8 |
+
Requirement already satisfied: packaging>=20.0 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (23.2)
|
| 9 |
Requirement already satisfied: kiwisolver>=1.0.1 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.4.5)
|
| 10 |
Requirement already satisfied: cycler>=0.10 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (0.12.1)
|
| 11 |
+
Requirement already satisfied: pyparsing>=2.3.1 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (2.4.5)
|
| 12 |
Requirement already satisfied: contourpy>=1.0.1 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.2.0)
|
| 13 |
Requirement already satisfied: pillow>=6.2.0 in ./lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (9.4.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
Requirement already satisfied: six>=1.5 in ./lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=2.1.0->xtcocotools) (1.16.0)
|
app.py
CHANGED
|
@@ -9,63 +9,73 @@ os.system("pip install 'mmpose'")
|
|
| 9 |
|
| 10 |
import PIL
|
| 11 |
import cv2
|
| 12 |
-
import mmpose
|
| 13 |
import numpy as np
|
| 14 |
|
| 15 |
import torch
|
| 16 |
from mmpose.apis import MMPoseInferencer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
import gradio as gr
|
| 18 |
|
| 19 |
import warnings
|
| 20 |
|
| 21 |
warnings.filterwarnings("ignore")
|
| 22 |
|
| 23 |
-
mmpose_model_list = ["human", "hand", "face", "animal", "wholebody",
|
| 24 |
-
"vitpose", "vitpose-s", "vitpose-b", "vitpose-l", "vitpose-h"]
|
| 25 |
-
|
| 26 |
def save_image(img, img_path):
|
| 27 |
# Convert PIL image to OpenCV image
|
| 28 |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 29 |
# Save OpenCV image
|
| 30 |
cv2.imwrite(img_path, img)
|
| 31 |
|
| 32 |
-
|
| 33 |
-
# # Images
|
| 34 |
-
# torch.hub.download_url_to_file(
|
| 35 |
-
# 'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
|
| 36 |
-
# 'bus.jpg')
|
| 37 |
-
# torch.hub.download_url_to_file(
|
| 38 |
-
# 'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
|
| 39 |
-
# 'dogs.jpg')
|
| 40 |
-
# torch.hub.download_url_to_file(
|
| 41 |
-
# 'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
|
| 42 |
-
# 'zidane.jpg')
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def predict_pose(img, model_name):
|
| 46 |
img_path = "input_img.jpg"
|
| 47 |
-
out_dir = "./output";
|
| 48 |
save_image(img, img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
if os.path.exists(save_dir):
|
| 56 |
-
out_img_path = save_dir + img_path
|
| 57 |
-
print("out_img_path: ", out_img_path)
|
| 58 |
-
else:
|
| 59 |
-
out_img_path = img_path
|
| 60 |
-
out_img = PIL.Image.open(out_img_path)
|
| 61 |
-
return (out_img, result)
|
| 62 |
|
| 63 |
# download_test_image()
|
| 64 |
input_image = gr.inputs.Image(type='pil', label="Original Image")
|
| 65 |
-
model_name = gr.inputs.Dropdown(choices=[m for m in mmpose_model_list], label='Model')
|
| 66 |
output_image = gr.outputs.Image(type="pil", label="Output Image")
|
| 67 |
output_text = gr.outputs.Textbox(label="Output Text")
|
| 68 |
|
| 69 |
title = "MMPose detection for ShopByShape"
|
| 70 |
-
iface = gr.Interface(fn=predict_pose, inputs=[input_image
|
| 71 |
iface.launch()
|
|
|
|
| 9 |
|
| 10 |
import PIL
|
| 11 |
import cv2
|
|
|
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
import torch
|
| 15 |
from mmpose.apis import MMPoseInferencer
|
| 16 |
+
from mmpose.apis import inference_topdown, init_model
|
| 17 |
+
from mmpose.utils import register_all_modules
|
| 18 |
+
register_all_modules()
|
| 19 |
+
|
| 20 |
import gradio as gr
|
| 21 |
|
| 22 |
import warnings
|
| 23 |
|
| 24 |
warnings.filterwarnings("ignore")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
def save_image(img, img_path):
|
| 27 |
# Convert PIL image to OpenCV image
|
| 28 |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 29 |
# Save OpenCV image
|
| 30 |
cv2.imwrite(img_path, img)
|
| 31 |
|
| 32 |
+
def predict_pose(img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
img_path = "input_img.jpg"
|
|
|
|
| 34 |
save_image(img, img_path)
|
| 35 |
+
|
| 36 |
+
result = mmpose_coco(img_path)
|
| 37 |
+
keypoints = result[0].pred_instances['keypoints'][0]
|
| 38 |
+
|
| 39 |
+
# Create a dictionary to store keypoints and their names
|
| 40 |
+
keypoints_data = {
|
| 41 |
+
'keypoints': keypoints.tolist(),
|
| 42 |
+
'keypoint_names': [
|
| 43 |
+
'nose',
|
| 44 |
+
'left_eye',
|
| 45 |
+
'right_eye',
|
| 46 |
+
'left_ear',
|
| 47 |
+
'right_ear',
|
| 48 |
+
'left_shoulder',
|
| 49 |
+
'right_shoulder',
|
| 50 |
+
'left_elbow',
|
| 51 |
+
'right_elbow',
|
| 52 |
+
'left_wrist',
|
| 53 |
+
'right_wrist',
|
| 54 |
+
'left_hip',
|
| 55 |
+
'right_hip',
|
| 56 |
+
'left_knee',
|
| 57 |
+
'right_knee',
|
| 58 |
+
'left_ankle',
|
| 59 |
+
'right_ankle'
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
return (img, keypoints_data)
|
| 63 |
+
|
| 64 |
+
def mmpose_coco(img_path,
|
| 65 |
+
config_file = 'mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py',
|
| 66 |
+
checkpoint_file = 'mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192-0e67c616_20220913.pth'):
|
| 67 |
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
|
| 68 |
+
# coco keypoints:
|
| 69 |
+
# https://github.com/open-mmlab/mmpose/blob/master/mmpose/datasets/datasets/top_down/topdown_coco_dataset.py#L28
|
| 70 |
+
model = init_model(config_file, checkpoint_file, device=device)
|
| 71 |
+
results = inference_topdown(model, img_path)
|
| 72 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
# download_test_image()
|
| 75 |
input_image = gr.inputs.Image(type='pil', label="Original Image")
|
|
|
|
| 76 |
output_image = gr.outputs.Image(type="pil", label="Output Image")
|
| 77 |
output_text = gr.outputs.Textbox(label="Output Text")
|
| 78 |
|
| 79 |
title = "MMPose detection for ShopByShape"
|
| 80 |
+
iface = gr.Interface(fn=predict_pose, inputs=[input_image], outputs=[output_image, output_text], title=title)
|
| 81 |
iface.launch()
|
mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192-0e67c616_20220913.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e67c6167d6a10fe8f27e3da1e9a415b57289d5820dcca2b42bd8079df4b7a3a
|
| 3 |
+
size 269176125
|
mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
auto_scale_lr = dict(base_batch_size=512)
|
| 2 |
+
backend_args = dict(backend='local')
|
| 3 |
+
codec = dict(
|
| 4 |
+
heatmap_size=(
|
| 5 |
+
48,
|
| 6 |
+
64,
|
| 7 |
+
),
|
| 8 |
+
input_size=(
|
| 9 |
+
192,
|
| 10 |
+
256,
|
| 11 |
+
),
|
| 12 |
+
sigma=2,
|
| 13 |
+
type='MSRAHeatmap')
|
| 14 |
+
custom_hooks = [
|
| 15 |
+
dict(type='SyncBuffersHook'),
|
| 16 |
+
]
|
| 17 |
+
data_mode = 'topdown'
|
| 18 |
+
data_root = 'data/coco/'
|
| 19 |
+
dataset_type = 'CocoDataset'
|
| 20 |
+
default_hooks = dict(
|
| 21 |
+
badcase=dict(
|
| 22 |
+
badcase_thr=5,
|
| 23 |
+
enable=False,
|
| 24 |
+
metric_type='loss',
|
| 25 |
+
out_dir='badcase',
|
| 26 |
+
type='BadCaseAnalysisHook'),
|
| 27 |
+
checkpoint=dict(
|
| 28 |
+
interval=10,
|
| 29 |
+
rule='greater',
|
| 30 |
+
save_best='coco/AP',
|
| 31 |
+
type='CheckpointHook'),
|
| 32 |
+
logger=dict(interval=50, type='LoggerHook'),
|
| 33 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 34 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 35 |
+
timer=dict(type='IterTimerHook'),
|
| 36 |
+
visualization=dict(enable=False, type='PoseVisualizationHook'))
|
| 37 |
+
default_scope = 'mmpose'
|
| 38 |
+
env_cfg = dict(
|
| 39 |
+
cudnn_benchmark=False,
|
| 40 |
+
dist_cfg=dict(backend='nccl'),
|
| 41 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 42 |
+
load_from = None
|
| 43 |
+
log_level = 'INFO'
|
| 44 |
+
log_processor = dict(
|
| 45 |
+
by_epoch=True, num_digits=6, type='LogProcessor', window_size=50)
|
| 46 |
+
model = dict(
|
| 47 |
+
backbone=dict(
|
| 48 |
+
extra=dict(
|
| 49 |
+
stage1=dict(
|
| 50 |
+
block='BOTTLENECK',
|
| 51 |
+
num_blocks=(4, ),
|
| 52 |
+
num_branches=1,
|
| 53 |
+
num_channels=(64, ),
|
| 54 |
+
num_modules=1),
|
| 55 |
+
stage2=dict(
|
| 56 |
+
block='BASIC',
|
| 57 |
+
num_blocks=(
|
| 58 |
+
4,
|
| 59 |
+
4,
|
| 60 |
+
),
|
| 61 |
+
num_branches=2,
|
| 62 |
+
num_channels=(
|
| 63 |
+
48,
|
| 64 |
+
96,
|
| 65 |
+
),
|
| 66 |
+
num_modules=1),
|
| 67 |
+
stage3=dict(
|
| 68 |
+
block='BASIC',
|
| 69 |
+
num_blocks=(
|
| 70 |
+
4,
|
| 71 |
+
4,
|
| 72 |
+
4,
|
| 73 |
+
),
|
| 74 |
+
num_branches=3,
|
| 75 |
+
num_channels=(
|
| 76 |
+
48,
|
| 77 |
+
96,
|
| 78 |
+
192,
|
| 79 |
+
),
|
| 80 |
+
num_modules=4),
|
| 81 |
+
stage4=dict(
|
| 82 |
+
block='BASIC',
|
| 83 |
+
num_blocks=(
|
| 84 |
+
4,
|
| 85 |
+
4,
|
| 86 |
+
4,
|
| 87 |
+
4,
|
| 88 |
+
),
|
| 89 |
+
num_branches=4,
|
| 90 |
+
num_channels=(
|
| 91 |
+
48,
|
| 92 |
+
96,
|
| 93 |
+
192,
|
| 94 |
+
384,
|
| 95 |
+
),
|
| 96 |
+
num_modules=3)),
|
| 97 |
+
in_channels=3,
|
| 98 |
+
init_cfg=dict(
|
| 99 |
+
checkpoint=
|
| 100 |
+
'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w48-8ef0771d.pth',
|
| 101 |
+
type='Pretrained'),
|
| 102 |
+
type='HRNet'),
|
| 103 |
+
data_preprocessor=dict(
|
| 104 |
+
bgr_to_rgb=True,
|
| 105 |
+
mean=[
|
| 106 |
+
123.675,
|
| 107 |
+
116.28,
|
| 108 |
+
103.53,
|
| 109 |
+
],
|
| 110 |
+
std=[
|
| 111 |
+
58.395,
|
| 112 |
+
57.12,
|
| 113 |
+
57.375,
|
| 114 |
+
],
|
| 115 |
+
type='PoseDataPreprocessor'),
|
| 116 |
+
head=dict(
|
| 117 |
+
decoder=dict(
|
| 118 |
+
heatmap_size=(
|
| 119 |
+
48,
|
| 120 |
+
64,
|
| 121 |
+
),
|
| 122 |
+
input_size=(
|
| 123 |
+
192,
|
| 124 |
+
256,
|
| 125 |
+
),
|
| 126 |
+
sigma=2,
|
| 127 |
+
type='MSRAHeatmap'),
|
| 128 |
+
deconv_out_channels=None,
|
| 129 |
+
in_channels=48,
|
| 130 |
+
loss=dict(type='KeypointMSELoss', use_target_weight=True),
|
| 131 |
+
out_channels=17,
|
| 132 |
+
type='HeatmapHead'),
|
| 133 |
+
test_cfg=dict(flip_mode='heatmap', flip_test=True, shift_heatmap=True),
|
| 134 |
+
type='TopdownPoseEstimator')
|
| 135 |
+
optim_wrapper = dict(optimizer=dict(lr=0.0005, type='Adam'))
|
| 136 |
+
param_scheduler = [
|
| 137 |
+
dict(
|
| 138 |
+
begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
|
| 139 |
+
dict(
|
| 140 |
+
begin=0,
|
| 141 |
+
by_epoch=True,
|
| 142 |
+
end=210,
|
| 143 |
+
gamma=0.1,
|
| 144 |
+
milestones=[
|
| 145 |
+
170,
|
| 146 |
+
200,
|
| 147 |
+
],
|
| 148 |
+
type='MultiStepLR'),
|
| 149 |
+
]
|
| 150 |
+
resume = False
|
| 151 |
+
test_cfg = dict()
|
| 152 |
+
test_dataloader = dict(
|
| 153 |
+
batch_size=32,
|
| 154 |
+
dataset=dict(
|
| 155 |
+
ann_file='annotations/person_keypoints_val2017.json',
|
| 156 |
+
bbox_file=
|
| 157 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',
|
| 158 |
+
data_mode='topdown',
|
| 159 |
+
data_prefix=dict(img='val2017/'),
|
| 160 |
+
data_root='data/coco/',
|
| 161 |
+
pipeline=[
|
| 162 |
+
dict(type='LoadImage'),
|
| 163 |
+
dict(type='GetBBoxCenterScale'),
|
| 164 |
+
dict(input_size=(
|
| 165 |
+
192,
|
| 166 |
+
256,
|
| 167 |
+
), type='TopdownAffine'),
|
| 168 |
+
dict(type='PackPoseInputs'),
|
| 169 |
+
],
|
| 170 |
+
test_mode=True,
|
| 171 |
+
type='CocoDataset'),
|
| 172 |
+
drop_last=False,
|
| 173 |
+
num_workers=2,
|
| 174 |
+
persistent_workers=True,
|
| 175 |
+
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler'))
|
| 176 |
+
test_evaluator = dict(
|
| 177 |
+
ann_file='data/coco/annotations/person_keypoints_val2017.json',
|
| 178 |
+
type='CocoMetric')
|
| 179 |
+
train_cfg = dict(by_epoch=True, max_epochs=210, val_interval=10)
|
| 180 |
+
train_dataloader = dict(
|
| 181 |
+
batch_size=32,
|
| 182 |
+
dataset=dict(
|
| 183 |
+
ann_file='annotations/person_keypoints_train2017.json',
|
| 184 |
+
data_mode='topdown',
|
| 185 |
+
data_prefix=dict(img='train2017/'),
|
| 186 |
+
data_root='data/coco/',
|
| 187 |
+
pipeline=[
|
| 188 |
+
dict(type='LoadImage'),
|
| 189 |
+
dict(type='GetBBoxCenterScale'),
|
| 190 |
+
dict(direction='horizontal', type='RandomFlip'),
|
| 191 |
+
dict(type='RandomHalfBody'),
|
| 192 |
+
dict(type='RandomBBoxTransform'),
|
| 193 |
+
dict(input_size=(
|
| 194 |
+
192,
|
| 195 |
+
256,
|
| 196 |
+
), type='TopdownAffine'),
|
| 197 |
+
dict(
|
| 198 |
+
encoder=dict(
|
| 199 |
+
heatmap_size=(
|
| 200 |
+
48,
|
| 201 |
+
64,
|
| 202 |
+
),
|
| 203 |
+
input_size=(
|
| 204 |
+
192,
|
| 205 |
+
256,
|
| 206 |
+
),
|
| 207 |
+
sigma=2,
|
| 208 |
+
type='MSRAHeatmap'),
|
| 209 |
+
type='GenerateTarget'),
|
| 210 |
+
dict(type='PackPoseInputs'),
|
| 211 |
+
],
|
| 212 |
+
type='CocoDataset'),
|
| 213 |
+
num_workers=2,
|
| 214 |
+
persistent_workers=True,
|
| 215 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
| 216 |
+
train_pipeline = [
|
| 217 |
+
dict(type='LoadImage'),
|
| 218 |
+
dict(type='GetBBoxCenterScale'),
|
| 219 |
+
dict(direction='horizontal', type='RandomFlip'),
|
| 220 |
+
dict(type='RandomHalfBody'),
|
| 221 |
+
dict(type='RandomBBoxTransform'),
|
| 222 |
+
dict(input_size=(
|
| 223 |
+
192,
|
| 224 |
+
256,
|
| 225 |
+
), type='TopdownAffine'),
|
| 226 |
+
dict(
|
| 227 |
+
encoder=dict(
|
| 228 |
+
heatmap_size=(
|
| 229 |
+
48,
|
| 230 |
+
64,
|
| 231 |
+
),
|
| 232 |
+
input_size=(
|
| 233 |
+
192,
|
| 234 |
+
256,
|
| 235 |
+
),
|
| 236 |
+
sigma=2,
|
| 237 |
+
type='MSRAHeatmap'),
|
| 238 |
+
type='GenerateTarget'),
|
| 239 |
+
dict(type='PackPoseInputs'),
|
| 240 |
+
]
|
| 241 |
+
val_cfg = dict()
|
| 242 |
+
val_dataloader = dict(
|
| 243 |
+
batch_size=32,
|
| 244 |
+
dataset=dict(
|
| 245 |
+
ann_file='annotations/person_keypoints_val2017.json',
|
| 246 |
+
bbox_file=
|
| 247 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json',
|
| 248 |
+
data_mode='topdown',
|
| 249 |
+
data_prefix=dict(img='val2017/'),
|
| 250 |
+
data_root='data/coco/',
|
| 251 |
+
pipeline=[
|
| 252 |
+
dict(type='LoadImage'),
|
| 253 |
+
dict(type='GetBBoxCenterScale'),
|
| 254 |
+
dict(input_size=(
|
| 255 |
+
192,
|
| 256 |
+
256,
|
| 257 |
+
), type='TopdownAffine'),
|
| 258 |
+
dict(type='PackPoseInputs'),
|
| 259 |
+
],
|
| 260 |
+
test_mode=True,
|
| 261 |
+
type='CocoDataset'),
|
| 262 |
+
drop_last=False,
|
| 263 |
+
num_workers=2,
|
| 264 |
+
persistent_workers=True,
|
| 265 |
+
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler'))
|
| 266 |
+
val_evaluator = dict(
|
| 267 |
+
ann_file='data/coco/annotations/person_keypoints_val2017.json',
|
| 268 |
+
type='CocoMetric')
|
| 269 |
+
val_pipeline = [
|
| 270 |
+
dict(type='LoadImage'),
|
| 271 |
+
dict(type='GetBBoxCenterScale'),
|
| 272 |
+
dict(input_size=(
|
| 273 |
+
192,
|
| 274 |
+
256,
|
| 275 |
+
), type='TopdownAffine'),
|
| 276 |
+
dict(type='PackPoseInputs'),
|
| 277 |
+
]
|
| 278 |
+
vis_backends = [
|
| 279 |
+
dict(type='LocalVisBackend'),
|
| 280 |
+
]
|
| 281 |
+
visualizer = dict(
|
| 282 |
+
name='visualizer',
|
| 283 |
+
type='PoseLocalVisualizer',
|
| 284 |
+
vis_backends=[
|
| 285 |
+
dict(type='LocalVisBackend'),
|
| 286 |
+
])
|