import gradio as gr import torch import torchaudio import re import os from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from speechbrain.pretrained import EncoderClassifier device = "cuda" if torch.cuda.is_available() else "cpu" # Load processor & vocoder processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) # Load both TTS models model_male = SpeechT5ForTextToSpeech.from_pretrained("HusseinBashir/xus23").to(device) model_female = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad").to(device) # Load speaker encoder model speaker_model = EncoderClassifier.from_hparams( source="speechbrain/spkrec-xvect-voxceleb", run_opts={"device": device}, savedir="./spk_model" ) # Auto-generate embedding def get_embedding(wav_path, pt_path): if os.path.exists(pt_path): return torch.load(pt_path).to(device) else: audio, sr = torchaudio.load(wav_path) audio = torchaudio.functional.resample(audio, sr, 16000).mean(dim=0).unsqueeze(0).to(device) with torch.no_grad(): emb = speaker_model.encode_batch(audio) emb = torch.nn.functional.normalize(emb, dim=2).squeeze() torch.save(emb.cpu(), pt_path) return emb # Ensure embeddings are created or loaded embedding_male = get_embedding("498-enhanced-v2.wav", "male_embedding.pt") embedding_female = get_embedding("caasho.wav", "female_embedding.pt") # Somali numbers to words number_words = { 0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan", 6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban", 11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex", 14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix", 17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal", 20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton", 60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan", 100: "boqol", 1000: "kun", } def number_to_words(number): if number < 20: return number_words[number] elif number < 100: tens, unit = divmod(number, 10) return number_words[tens * 10] + (" " + number_words[unit] if unit else "") elif number < 1000: hundreds, remainder = divmod(number, 100) return (number_words[hundreds] + " boqol" if hundreds > 1 else "BOQOL") + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000: thousands, remainder = divmod(number, 1000) return (number_to_words(thousands) + " kun" if thousands > 1 else "KUN") + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000000: millions, remainder = divmod(number, 1000000) return number_to_words(millions) + " malyan" + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000000000: billions, remainder = divmod(number, 1000000000) return number_to_words(billions) + " milyaar" + (" " + number_to_words(remainder) if remainder else "") else: return str(number) def replace_numbers_with_words(text): return re.sub(r'\b\d+\b', lambda match: number_to_words(int(match.group())), text) def normalize_text(text): text = text.lower() text = replace_numbers_with_words(text) text = re.sub(r'[^\w\s]', '', text) return text # Main TTS function def text_to_speech(text, voice): text = normalize_text(text) inputs = processor(text=text, return_tensors="pt").to(device) if voice == "Male": model = model_male embedding = embedding_male else: model = model_female embedding = embedding_female with torch.no_grad(): speech = model.generate_speech(inputs["input_ids"], embedding.unsqueeze(0), vocoder=vocoder) return (16000, speech.cpu().numpy()) # Gradio Interface iface = gr.Interface( fn=text_to_speech, inputs=[ gr.Textbox(label="Geli qoraalka Af-Soomaaliga", placeholder="Tusaale: Baro aqoonta casriga ah..."), gr.Radio(["Male", "Female"], label="Dooro Codka", value="Female") ], outputs=gr.Audio(label="Codka la abuuray", type="numpy"), title="Somali TTS (Lab & Dhedig)", description="Dooro codka aad rabto, geli qoraal af-soomaali ah, codka ayaa la abuuri doonaa adigoo isticmaalaya Somali TTS (SpeechT5)." ) iface.launch()