Spaces:
Sleeping
Sleeping
File size: 56,019 Bytes
306b4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 |
# Copyright (c) 2024, Tri Dao, Albert Gu.
"""We want triton==2.1.0 or 2.2.0 for this
"""
import math
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
from einops import rearrange, repeat
from mamba_ssm.ops.triton.softplus import softplus
def init_to_zero(names):
return lambda nargs: [nargs[name].zero_() for name in names if nargs[name] is not None]
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_H': 1}),
triton.Config({'BLOCK_SIZE_H': 2}),
triton.Config({'BLOCK_SIZE_H': 4}),
triton.Config({'BLOCK_SIZE_H': 8}),
triton.Config({'BLOCK_SIZE_H': 16}),
triton.Config({'BLOCK_SIZE_H': 32}),
triton.Config({'BLOCK_SIZE_H': 64}),
],
key=['chunk_size', 'nheads'],
)
@triton.jit
def _chunk_cumsum_fwd_kernel(
# Pointers to matrices
dt_ptr, A_ptr, dt_bias_ptr, dt_out_ptr, dA_cumsum_ptr,
# Matrix dimension
batch, seqlen, nheads, chunk_size,
dt_min, dt_max,
# Strides
stride_dt_batch, stride_dt_seqlen, stride_dt_head,
stride_A_head,
stride_dt_bias_head,
stride_dt_out_batch, stride_dt_out_chunk, stride_dt_out_head, stride_dt_out_csize,
stride_dA_cs_batch, stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
# Meta-parameters
DT_SOFTPLUS: tl.constexpr,
HAS_DT_BIAS: tl.constexpr,
BLOCK_SIZE_H: tl.constexpr, BLOCK_SIZE_CHUNK: tl.constexpr,
):
pid_b = tl.program_id(axis=0)
pid_c = tl.program_id(axis=1)
pid_h = tl.program_id(axis=2)
dt_ptr += pid_b * stride_dt_batch + pid_c * chunk_size * stride_dt_seqlen
dt_out_ptr += pid_b * stride_dt_out_batch + pid_c * stride_dt_out_chunk
dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk
offs_h = pid_h * BLOCK_SIZE_H + tl.arange(0, BLOCK_SIZE_H)
offs_c = tl.arange(0, BLOCK_SIZE_CHUNK)
dt_ptrs = dt_ptr + (offs_h[:, None] * stride_dt_head + offs_c[None, :] * stride_dt_seqlen)
A_ptrs = A_ptr + offs_h * stride_A_head
dt_out_ptrs = dt_out_ptr + (offs_h[:, None] * stride_dt_out_head + offs_c[None, :] * stride_dt_out_csize)
dA_cs_ptrs = dA_cumsum_ptr + (offs_h[:, None] * stride_dA_cs_head + offs_c[None, :] * stride_dA_cs_csize)
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
dt = tl.load(dt_ptrs, mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), other=0.0).to(tl.float32)
if HAS_DT_BIAS:
dt_bias = tl.load(dt_bias_ptr + offs_h * stride_dt_bias_head, mask=offs_h < nheads, other=0.0).to(tl.float32)
dt += dt_bias[:, None]
if DT_SOFTPLUS:
dt = softplus(dt)
# As of Triton 2.2.0, tl.clamp is not available yet
# dt = tl.clamp(dt, dt_min, dt_max)
dt = tl.minimum(tl.maximum(dt, dt_min), dt_max)
dt = tl.where((offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), dt, 0.0)
tl.store(dt_out_ptrs, dt, mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size))
A = tl.load(A_ptrs, mask=offs_h < nheads, other=0.0).to(tl.float32)
dA = dt * A[:, None]
dA_cs = tl.cumsum(dA, axis=1)
tl.store(dA_cs_ptrs, dA_cs, mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size))
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_H': 1}, pre_hook=init_to_zero(["dA_ptr", "ddt_bias_ptr"])),
triton.Config({'BLOCK_SIZE_H': 2}, pre_hook=init_to_zero(["dA_ptr", "ddt_bias_ptr"])),
triton.Config({'BLOCK_SIZE_H': 4}, pre_hook=init_to_zero(["dA_ptr", "ddt_bias_ptr"])),
triton.Config({'BLOCK_SIZE_H': 8}, pre_hook=init_to_zero(["dA_ptr", "ddt_bias_ptr"])),
triton.Config({'BLOCK_SIZE_H': 16}, pre_hook=init_to_zero(["dA_ptr", "ddt_bias_ptr"])),
triton.Config({'BLOCK_SIZE_H': 32}, pre_hook=init_to_zero(["dA_ptr", "ddt_bias_ptr"])),
triton.Config({'BLOCK_SIZE_H': 64}, pre_hook=init_to_zero(["dA_ptr", "ddt_bias_ptr"])),
],
key=['chunk_size', 'nheads'],
)
@triton.jit
def _chunk_cumsum_bwd_kernel(
# Pointers to matrices
ddA_ptr, ddt_out_ptr, dt_ptr, A_ptr, dt_bias_ptr,
ddt_ptr, dA_ptr, ddt_bias_ptr,
# Matrix dimensions
batch, seqlen, nheads, chunk_size,
dt_min, dt_max,
# Strides
stride_ddA_batch, stride_ddA_chunk, stride_ddA_head, stride_ddA_csize,
stride_ddt_out_batch, stride_ddt_out_chunk, stride_ddt_out_head, stride_ddt_out_csize,
stride_dt_batch, stride_dt_seqlen, stride_dt_head,
stride_A_head,
stride_dt_bias_head,
stride_ddt_batch, stride_ddt_seqlen, stride_ddt_head,
stride_dA_head,
stride_ddt_bias_head,
# Meta-parameters
DT_SOFTPLUS: tl.constexpr,
HAS_DT_BIAS: tl.constexpr,
BLOCK_SIZE_H: tl.constexpr, BLOCK_SIZE_CHUNK: tl.constexpr,
):
pid_b = tl.program_id(axis=0)
pid_c = tl.program_id(axis=1)
pid_h = tl.program_id(axis=2)
ddt_out_ptr += pid_b * stride_ddt_out_batch + pid_c * stride_ddt_out_chunk
ddA_ptr += pid_b * stride_ddA_batch + pid_c * stride_ddA_chunk
dt_ptr += pid_b * stride_dt_batch + pid_c * chunk_size * stride_dt_seqlen
ddt_ptr += pid_b * stride_ddt_batch + pid_c * chunk_size * stride_ddt_seqlen
offs_h = pid_h * BLOCK_SIZE_H + tl.arange(0, BLOCK_SIZE_H)
offs_c = tl.arange(0, BLOCK_SIZE_CHUNK)
ddt_out_ptrs = ddt_out_ptr + (offs_h[:, None] * stride_ddt_out_head + offs_c[None, :] * stride_ddt_out_csize)
ddA_ptrs = ddA_ptr + (offs_h[:, None] * stride_ddA_head + offs_c[None, :] * stride_ddA_csize)
dt_ptrs = dt_ptr + (offs_h[:, None] * stride_dt_head + offs_c[None, :] * stride_dt_seqlen)
ddt_ptrs = ddt_ptr + (offs_h[:, None] * stride_ddt_head + offs_c[None, :] * stride_ddt_seqlen)
A_ptrs = A_ptr + offs_h * stride_A_head
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
ddA = tl.load(ddA_ptrs, mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), other=0.0).to(tl.float32)
ddt_out = tl.load(ddt_out_ptrs, mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), other=0.0).to(tl.float32)
A = tl.load(A_ptrs, mask=offs_h < nheads, other=0.0).to(tl.float32)
ddt = ddA * A[:, None] + ddt_out
dt = tl.load(dt_ptrs, mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), other=0.0).to(tl.float32)
if HAS_DT_BIAS:
dt_bias = tl.load(dt_bias_ptr + offs_h * stride_dt_bias_head, mask=offs_h < nheads, other=0.0).to(tl.float32)
dt += dt_bias[:, None]
if DT_SOFTPLUS:
dt_presoftplus = dt
dt = softplus(dt)
clamp_mask = (dt < dt_min) | (dt > dt_max)
# As of Triton 2.2.0, tl.clamp is not available yet
# dt = tl.clamp(dt, dt_min, dt_max)
dt = tl.minimum(tl.maximum(dt, dt_min), dt_max)
dt = tl.where((offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), dt, 0.0)
ddt = tl.where((offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit), ddt, 0.0)
ddt = tl.where(clamp_mask, 0.0, ddt)
if DT_SOFTPLUS:
ddt = tl.where(dt_presoftplus <= 20.0, ddt * tl.sigmoid(dt_presoftplus), ddt)
tl.store(ddt_ptrs, ddt, mask=(offs_h[:, None] < nheads) & (offs_c[None, :] < chunk_size_limit))
dA = tl.sum(ddA * dt, axis=1)
tl.atomic_add(dA_ptr + offs_h * stride_dA_head, dA, mask=offs_h < nheads)
if HAS_DT_BIAS:
ddt_bias = tl.sum(ddt, axis=1)
tl.atomic_add(ddt_bias_ptr + offs_h * stride_ddt_bias_head, ddt_bias, mask=offs_h < nheads)
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=2),
],
key=['hdim', 'dstate', 'chunk_size'],
)
@triton.jit
def _chunk_state_fwd_kernel(
# Pointers to matrices
x_ptr, b_ptr, states_ptr, dt_ptr, dA_cumsum_ptr, seq_idx_ptr,
# Matrix dimensions
hdim, dstate, chunk_size,
batch, seqlen, nheads_ngroups_ratio,
# Strides
stride_x_batch, stride_x_seqlen, stride_x_head, stride_x_hdim,
stride_b_batch, stride_b_seqlen, stride_b_head, stride_b_dstate,
stride_states_batch, stride_states_chunk, stride_states_head, stride_states_hdim, stride_states_dstate,
stride_dt_batch, stride_dt_chunk, stride_dt_head, stride_dt_csize,
stride_dA_cs_batch, stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
stride_seq_idx_batch, stride_seq_idx_seqlen,
# Meta-parameters
HAS_SEQ_IDX: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
):
pid_bc = tl.program_id(axis=1)
pid_c = pid_bc // batch
pid_b = pid_bc - pid_c * batch
pid_h = tl.program_id(axis=2)
num_pid_n = tl.cdiv(dstate, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + (pid_h // nheads_ngroups_ratio) * stride_b_head
x_ptr += pid_b * stride_x_batch + pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + pid_h * stride_dt_head
dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
if HAS_SEQ_IDX:
seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
x_ptrs = x_ptr + (offs_m[:, None] * stride_x_hdim + offs_k[None, :] * stride_x_seqlen)
b_ptrs = b_ptr + (offs_n[None, :] * stride_b_dstate + offs_k[:, None] * stride_b_seqlen)
dt_ptrs = dt_ptr + offs_k * stride_dt_csize
dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(tl.float32)
dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
if HAS_SEQ_IDX:
seq_idx_ptrs = seq_idx_ptr + offs_k * stride_seq_idx_seqlen
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
if HAS_SEQ_IDX:
seq_idx_last = tl.load(seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen)
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, chunk_size_limit, BLOCK_SIZE_K):
x = tl.load(x_ptrs, mask=(offs_m[:, None] < hdim) & (offs_k[None, :] < chunk_size_limit - k), other=0.0)
b = tl.load(b_ptrs, mask=(offs_k[:, None] < chunk_size_limit - k) & (offs_n[None, :] < dstate), other=0.0).to(tl.float32)
dA_cs_k = tl.load(dA_cumsum_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(tl.float32)
if HAS_SEQ_IDX:
seq_idx_k = tl.load(seq_idx_ptrs, mask=offs_k < chunk_size_limit - k, other=-1)
dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(tl.float32)
if not HAS_SEQ_IDX:
scale = tl.exp((dA_cs_last - dA_cs_k)) * dt_k
else:
scale = tl.where(seq_idx_k == seq_idx_last, tl.exp((dA_cs_last - dA_cs_k)) * dt_k, 0.0)
b *= scale[:, None]
b = b.to(x_ptr.dtype.element_ty)
acc += tl.dot(x, b)
x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
b_ptrs += BLOCK_SIZE_K * stride_b_seqlen
dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
if HAS_SEQ_IDX:
seq_idx_ptrs += BLOCK_SIZE_K * stride_seq_idx_seqlen
states = acc.to(states_ptr.dtype.element_ty)
states_ptr += pid_b * stride_states_batch + pid_c * stride_states_chunk + pid_h * stride_states_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
states_ptrs = states_ptr + (offs_m[:, None] * stride_states_hdim + offs_n[None, :] * stride_states_dstate)
c_mask = (offs_m[:, None] < hdim) & (offs_n[None, :] < dstate)
tl.store(states_ptrs, states, mask=c_mask)
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr", "ddA_cumsum_ptr"])),
],
key=['chunk_size', 'hdim', 'dstate'],
)
@triton.jit
def _chunk_state_bwd_dx_kernel(
# Pointers to matrices
x_ptr, b_ptr, dstates_ptr, dt_ptr, dA_cumsum_ptr,
dx_ptr, ddt_ptr, ddA_cumsum_ptr,
# Matrix dimensions
chunk_size, hdim, dstate,
batch, seqlen, nheads_ngroups_ratio,
# Strides
stride_x_batch, stride_x_seqlen, stride_x_head, stride_x_hdim,
stride_b_batch, stride_b_seqlen, stride_b_head, stride_b_dstate,
stride_dstates_batch, stride_dstates_chunk, stride_states_head, stride_states_hdim, stride_states_dstate,
stride_dt_batch, stride_dt_chunk, stride_dt_head, stride_dt_csize,
stride_dA_cs_batch, stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
stride_dx_batch, stride_dx_seqlen, stride_dx_head, stride_dx_hdim,
stride_ddt_batch, stride_ddt_chunk, stride_ddt_head, stride_ddt_csize,
stride_ddA_cs_batch, stride_ddA_cs_chunk, stride_ddA_cs_head, stride_ddA_cs_csize,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
BLOCK_SIZE_DSTATE: tl.constexpr,
):
pid_bc = tl.program_id(axis=1)
pid_c = pid_bc // batch
pid_b = pid_bc - pid_c * batch
pid_h = tl.program_id(axis=2)
num_pid_n = tl.cdiv(hdim, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
x_ptr += pid_b * stride_x_batch + pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + (pid_h // nheads_ngroups_ratio) * stride_b_head
dstates_ptr += pid_b * stride_dstates_batch + pid_c * stride_dstates_chunk + pid_h * stride_states_head
dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + pid_h * stride_dt_head
ddt_ptr += pid_b * stride_ddt_batch + pid_c * stride_ddt_chunk + pid_h * stride_ddt_head
ddA_cumsum_ptr += pid_b * stride_ddA_cs_batch + pid_c * stride_ddA_cs_chunk + pid_h * stride_ddA_cs_head
dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
# Faster to just do 1 iteration with larger BLOCK_SIZE_K, up to block size 128
offs_k = tl.arange(0, BLOCK_SIZE_DSTATE if BLOCK_SIZE_DSTATE <= 128 else BLOCK_SIZE_K)
b_ptrs = b_ptr + (offs_m[:, None] * stride_b_seqlen + offs_k[None, :] * stride_b_dstate)
dstates_ptrs = dstates_ptr + (offs_n[None, :] * stride_states_hdim + offs_k[:, None] * stride_states_dstate)
if BLOCK_SIZE_DSTATE <= 128:
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < dstate), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_k[:, None] < dstate) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc = tl.dot(b, dstates)
else:
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, dstate, BLOCK_SIZE_K):
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < dstate - k), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_k[:, None] < dstate - k) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc += tl.dot(b, dstates)
b_ptrs += BLOCK_SIZE_K * stride_b_dstate
dstates_ptrs += BLOCK_SIZE_K * stride_states_dstate
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(tl.float32)
dt_ptrs = dt_ptr + offs_m * stride_dt_csize
dA_cumsum_ptrs = dA_cumsum_ptr + offs_m * stride_dA_cs_csize
dA_cs_m = tl.load(dA_cumsum_ptrs, mask=offs_m < chunk_size, other=0.0).to(tl.float32)
dt_m = tl.load(dt_ptrs, mask=offs_m < chunk_size, other=0.0).to(tl.float32)
acc *= tl.exp(dA_cs_last - dA_cs_m)[:, None]
x_ptrs = x_ptr + (offs_m[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim)
x = tl.load(x_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
ddt = tl.sum(acc * x, axis=1)
ddt_ptrs = ddt_ptr + offs_m * stride_ddt_csize
tl.atomic_add(ddt_ptrs, ddt, mask=offs_m < chunk_size)
ddA_cs = -(ddt * dt_m)
ddA_cs_last = -tl.sum(ddA_cs)
ddA_cumsum_ptrs = ddA_cumsum_ptr + offs_m * stride_ddA_cs_csize
tl.atomic_add(ddA_cumsum_ptrs, ddA_cs, mask=offs_m < chunk_size)
tl.atomic_add(ddA_cumsum_ptr + (chunk_size - 1) * stride_ddA_cs_csize, ddA_cs_last)
dx = (acc * dt_m[:, None]).to(dx_ptr.dtype.element_ty)
dx_ptr += pid_b * stride_dx_batch + pid_c * chunk_size * stride_dx_seqlen + pid_h * stride_dx_head
dx_ptrs = dx_ptr + (offs_m[:, None] * stride_dx_seqlen + offs_n[None, :] * stride_dx_hdim)
tl.store(dx_ptrs, dx, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim))
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 128}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
],
key=['chunk_size', 'dstate', 'hdim'],
)
@triton.jit
def _chunk_state_bwd_db_kernel(
# Pointers to matrices
x_ptr, dstates_ptr, b_ptr, dt_ptr, dA_cumsum_ptr, seq_idx_ptr,
db_ptr, ddA_cumsum_ptr,
# Matrix dimensions
chunk_size, dstate, hdim,
batch, seqlen, nheads, nheads_per_program, ngroups,
# Strides
stride_x_batch, stride_x_seqlen, stride_x_head, stride_x_hdim,
stride_dstates_batch, stride_dstates_chunk, stride_states_head, stride_states_hdim, stride_states_dstate,
stride_b_batch, stride_b_seqlen, stride_b_head, stride_b_dstate,
stride_dt_batch, stride_dt_chunk, stride_dt_head, stride_dt_csize,
stride_dA_cs_batch, stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
stride_seq_idx_batch, stride_seq_idx_seqlen,
stride_db_batch, stride_db_seqlen, stride_db_split, stride_db_group, stride_db_dstate,
stride_ddA_cs_batch, stride_ddA_cs_chunk, stride_ddA_cs_head, stride_ddA_cs_csize,
# Meta-parameters
HAS_DDA_CS: tl.constexpr,
HAS_SEQ_IDX: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
):
pid_bc = tl.program_id(axis=1)
pid_c = pid_bc // batch
pid_b = pid_bc - pid_c * batch
pid_sg = tl.program_id(axis=2)
pid_s = pid_sg // ngroups
pid_g = pid_sg - pid_s * ngroups
num_pid_n = tl.cdiv(dstate, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
x_ptr += pid_b * stride_x_batch + pid_c * chunk_size * stride_x_seqlen + (pid_g * (nheads // ngroups) + pid_s * nheads_per_program) * stride_x_head
db_ptr += pid_b * stride_db_batch + pid_c * chunk_size * stride_db_seqlen + pid_g * stride_db_group + pid_s * stride_db_split
dstates_ptr += pid_b * stride_dstates_batch + pid_c * stride_dstates_chunk + (pid_g * (nheads // ngroups) + pid_s * nheads_per_program) * stride_states_head
dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + (pid_g * (nheads // ngroups) + pid_s * nheads_per_program) * stride_dt_head
dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk + (pid_g * (nheads // ngroups) + pid_s * nheads_per_program) * stride_dA_cs_head
if HAS_DDA_CS:
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + pid_g * stride_b_head
ddA_cumsum_ptr += pid_b * stride_ddA_cs_batch + pid_c * stride_ddA_cs_chunk + (pid_g * (nheads // ngroups) + pid_s * nheads_per_program) * stride_ddA_cs_head
if HAS_SEQ_IDX:
seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
x_ptrs = x_ptr + (offs_m[:, None] * stride_x_seqlen + offs_k[None, :] * stride_x_hdim)
dstates_ptrs = dstates_ptr + (offs_n[None, :] * stride_states_dstate + offs_k[:, None] * stride_states_hdim)
dt_ptrs = dt_ptr + offs_m * stride_dt_csize
dA_cumsum_ptrs = dA_cumsum_ptr + offs_m * stride_dA_cs_csize
if HAS_DDA_CS:
b_ptrs = b_ptr + (offs_m[:, None] * stride_b_seqlen + offs_n[None, :] * stride_b_dstate)
ddA_cumsum_ptrs = ddA_cumsum_ptr + offs_m * stride_ddA_cs_csize
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
if HAS_DDA_CS:
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < dstate), other=0.0).to(tl.float32)
if HAS_SEQ_IDX:
seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1)
seq_idx_last = tl.load(seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen)
nheads_iter = min(nheads_per_program, nheads // ngroups - pid_s * nheads_per_program)
for h in range(nheads_iter):
x = tl.load(x_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < hdim), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_k[:, None] < hdim) & (offs_n[None, :] < dstate), other=0.0)
dstates = dstates.to(x_ptrs.dtype.element_ty)
db = tl.dot(x, dstates)
dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(tl.float32)
dA_cs_m = tl.load(dA_cumsum_ptrs, mask=offs_m < chunk_size, other=0.0).to(tl.float32)
dt_m = tl.load(dt_ptrs, mask=offs_m < chunk_size, other=0.0).to(tl.float32)
if not HAS_SEQ_IDX:
scale = tl.exp(dA_cs_last - dA_cs_m)
else:
scale = tl.where(seq_idx_m == seq_idx_last, tl.exp(dA_cs_last - dA_cs_m), 0.0)
db *= (scale * dt_m)[:, None]
if HAS_DDA_CS:
# This is the gradient wrt (dA_cs_last - dA_cs_m), i.e. the exclusive reverse cumsum
ddA_cs = tl.sum(db * b, axis=1)
tl.atomic_add(ddA_cumsum_ptrs + stride_ddA_cs_csize, ddA_cs, mask=offs_m < chunk_size - 1)
acc += db
x_ptrs += stride_x_head
dstates_ptrs += stride_states_head
dt_ptrs += stride_dt_head
dA_cumsum_ptr += stride_dA_cs_head
dA_cumsum_ptrs += stride_dA_cs_head
if HAS_DDA_CS:
ddA_cumsum_ptrs += stride_ddA_cs_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
# if HAS_SEQ_IDX:
# seq_idx_last = tl.load(seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen)
# seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1)
# acc = tl.where(seq_idx_m[:, None] == seq_idx_last, acc, 0.0)
db_ptrs = db_ptr + (offs_m[:, None] * stride_db_seqlen + offs_n[None, :] * stride_db_dstate)
tl.store(db_ptrs, acc, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < dstate))
@triton.autotune(
configs=[
# triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
# triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=8, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=8, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=8, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=8, pre_hook=init_to_zero(["ddA_cumsum_ptr"])),
],
key=['chunk_size', 'hdim', 'dstate'],
)
@triton.jit
def _chunk_state_bwd_ddAcs_stable_kernel(
# Pointers to matrices
x_ptr, b_ptr, dstates_ptr, dt_ptr, dA_cumsum_ptr, seq_idx_ptr,
ddA_cumsum_ptr,
# Matrix dimensions
chunk_size, hdim, dstate,
batch, seqlen, nheads_ngroups_ratio,
# Strides
stride_x_batch, stride_x_seqlen, stride_x_head, stride_x_hdim,
stride_b_batch, stride_b_seqlen, stride_b_head, stride_b_dstate,
stride_dstates_batch, stride_dstates_chunk, stride_states_head, stride_states_hdim, stride_states_dstate,
stride_dt_batch, stride_dt_chunk, stride_dt_head, stride_dt_csize,
stride_dA_cs_batch, stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
stride_seq_idx_batch, stride_seq_idx_seqlen,
stride_ddA_cs_batch, stride_ddA_cs_chunk, stride_ddA_cs_head, stride_ddA_cs_csize,
# Meta-parameters
HAS_SEQ_IDX: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
BLOCK_SIZE_DSTATE: tl.constexpr,
):
pid_bc = tl.program_id(axis=1)
pid_c = pid_bc // batch
pid_b = pid_bc - pid_c * batch
pid_h = tl.program_id(axis=2)
num_pid_n = tl.cdiv(hdim, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
x_ptr += pid_b * stride_x_batch + pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + (pid_h // nheads_ngroups_ratio) * stride_b_head
dstates_ptr += pid_b * stride_dstates_batch + pid_c * stride_dstates_chunk + pid_h * stride_states_head
dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + pid_h * stride_dt_head
ddA_cumsum_ptr += pid_b * stride_ddA_cs_batch + pid_c * stride_ddA_cs_chunk + pid_h * stride_ddA_cs_head
dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
if HAS_SEQ_IDX:
seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
# Faster to just do 1 iteration with larger BLOCK_SIZE_K, up to block size 128
offs_k = tl.arange(0, BLOCK_SIZE_DSTATE if BLOCK_SIZE_DSTATE <= 128 else BLOCK_SIZE_K)
b_ptrs = b_ptr + (offs_m[:, None] * stride_b_seqlen + offs_k[None, :] * stride_b_dstate)
dstates_ptrs = dstates_ptr + (offs_n[None, :] * stride_states_hdim + offs_k[:, None] * stride_states_dstate)
if BLOCK_SIZE_DSTATE <= 128:
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < dstate), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_k[:, None] < dstate) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc = tl.dot(b, dstates)
else:
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, dstate, BLOCK_SIZE_K):
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < dstate - k), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_k[:, None] < dstate - k) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc += tl.dot(b, dstates)
b_ptrs += BLOCK_SIZE_K * stride_b_dstate
dstates_ptrs += BLOCK_SIZE_K * stride_states_dstate
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
dA_cs_m = tl.load(dA_cumsum_ptr + offs_m * stride_dA_cs_csize, mask=offs_m < chunk_size, other=0.0).to(tl.float32)
dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(tl.float32)
if not HAS_SEQ_IDX:
scale = tl.exp(dA_cs_last - dA_cs_m)
else:
seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1)
seq_idx_last = tl.load(seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen)
scale = tl.where(seq_idx_m == seq_idx_last, tl.exp(dA_cs_last - dA_cs_m), 0.0)
acc *= scale[:, None]
x_ptrs = x_ptr + (offs_m[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim)
x = tl.load(x_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
dt_ptrs = dt_ptr + offs_m * stride_dt_csize
dt_m = tl.load(dt_ptrs, mask=offs_m < chunk_size, other=0.0).to(tl.float32)
ddt = tl.sum(acc * x, axis=1)
# ddA_cs = -(ddt * dt_m)
# Triton 2.2.0 errors if we have the cumsum here, so we just write it out
# then call torch.cumsum outside this kernel.
# ddA_cs = tl.cumsum(ddt * dt_m)
ddA_cs = ddt * dt_m
ddA_cumsum_ptrs = ddA_cumsum_ptr + offs_m * stride_ddA_cs_csize
# tl.atomic_add(ddA_cumsum_ptrs, ddA_cs, mask=offs_m < chunk_size)
tl.atomic_add(ddA_cumsum_ptrs + stride_ddA_cs_csize, ddA_cs, mask=offs_m < chunk_size - 1)
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=2),
],
key=['hdim', 'dstate', 'chunk_size'],
)
@triton.jit
def _chunk_state_varlen_kernel(
# Pointers to matrices
x_ptr, b_ptr, dt_ptr, dA_cumsum_ptr, chunk_states_ptr, cu_seqlens_ptr, states_ptr,
# Matrix dimensions
hdim, dstate, chunk_size,
seqlen, nheads_ngroups_ratio,
# Strides
stride_x_seqlen, stride_x_head, stride_x_hdim,
stride_b_seqlen, stride_b_head, stride_b_dstate,
stride_dt_chunk, stride_dt_head, stride_dt_csize,
stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
stride_chunk_states_chunk, stride_chunk_states_head, stride_chunk_states_hdim, stride_chunk_states_dstate,
stride_states_batch, stride_states_head, stride_states_hdim, stride_states_dstate,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
):
pid_b = tl.program_id(axis=1)
pid_h = tl.program_id(axis=2)
num_pid_n = tl.cdiv(dstate, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
end_idx = tl.load(cu_seqlens_ptr + pid_b + 1)
pid_c = (end_idx - 1) // chunk_size
b_ptr += pid_c * chunk_size * stride_b_seqlen + (pid_h // nheads_ngroups_ratio) * stride_b_head
x_ptr += pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
dt_ptr += pid_c * stride_dt_chunk + pid_h * stride_dt_head
dA_cumsum_ptr += pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
chunk_states_ptr += pid_c * stride_chunk_states_chunk + pid_h * stride_chunk_states_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
x_ptrs = x_ptr + (offs_m[:, None] * stride_x_hdim + offs_k[None, :] * stride_x_seqlen)
b_ptrs = b_ptr + (offs_n[None, :] * stride_b_dstate + offs_k[:, None] * stride_b_seqlen)
dt_ptrs = dt_ptr + offs_k * stride_dt_csize
dA_cs_last = tl.load(dA_cumsum_ptr + (end_idx - pid_c * chunk_size - 1) * stride_dA_cs_csize).to(tl.float32)
dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
chunk_size_limit = end_idx - pid_c * chunk_size
start_idx = tl.load(cu_seqlens_ptr + pid_b)
start_idx_cur = tl.maximum(start_idx - pid_c * chunk_size, 0)
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, chunk_size_limit, BLOCK_SIZE_K):
x = tl.load(x_ptrs, mask=(offs_m[:, None] < hdim) & (offs_k[None, :] < chunk_size_limit - k) & (offs_k[None, :] >= start_idx_cur - k), other=0.0)
b = tl.load(b_ptrs, mask=(offs_k[:, None] < chunk_size_limit - k) & (offs_n[None, :] < dstate) & (offs_k[:, None] >= start_idx_cur - k), other=0.0).to(tl.float32)
dA_cs_k = tl.load(dA_cumsum_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(tl.float32)
dt_k = tl.load(dt_ptrs, mask=offs_k < chunk_size_limit - k, other=0.0).to(tl.float32)
scale = tl.where((offs_k >= start_idx_cur - k) & (offs_k < chunk_size_limit - k),
tl.exp((dA_cs_last - dA_cs_k)) * dt_k, 0.0)
b *= scale[:, None]
b = b.to(x_ptr.dtype.element_ty)
acc += tl.dot(x, b)
x_ptrs += BLOCK_SIZE_K * stride_x_seqlen
b_ptrs += BLOCK_SIZE_K * stride_b_seqlen
dt_ptrs += BLOCK_SIZE_K * stride_dt_csize
dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
# If the sequence starts after the last chunk idx, we don't need to add the contribution from the last chunk
if start_idx < pid_c * chunk_size:
chunk_states_ptrs = chunk_states_ptr + (offs_m[:, None] * stride_chunk_states_hdim + offs_n[None, :] * stride_chunk_states_dstate)
chunk_states = tl.load(chunk_states_ptrs, mask=(offs_m[:, None] < hdim) & (offs_n[None, :] < dstate), other=0.0).to(tl.float32)
# scale = tl.where(start_idx < pid_c * chunk_size, tl.exp(dA_cs_last), 0.0)
scale = tl.exp(dA_cs_last)
acc += chunk_states * scale
states = acc.to(states_ptr.dtype.element_ty)
states_ptr += pid_b * stride_states_batch + pid_h * stride_states_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
states_ptrs = states_ptr + (offs_m[:, None] * stride_states_hdim + offs_n[None, :] * stride_states_dstate)
c_mask = (offs_m[:, None] < hdim) & (offs_n[None, :] < dstate)
tl.store(states_ptrs, states, mask=c_mask)
def _chunk_cumsum_fwd(dt, A, chunk_size, dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf"))):
batch, seqlen, nheads = dt.shape
assert A.shape == (nheads,)
if dt_bias is not None:
assert dt_bias.shape == (nheads,)
nchunks = math.ceil(seqlen / chunk_size)
dt_out = torch.empty(batch, nheads, nchunks, chunk_size, device=dt.device, dtype=torch.float32)
dA_cumsum = torch.empty(batch, nheads, nchunks, chunk_size, device=dt.device, dtype=torch.float32)
grid_chunk_cs = lambda META: (batch, nchunks, triton.cdiv(nheads, META['BLOCK_SIZE_H']))
with torch.cuda.device(dt.device.index):
_chunk_cumsum_fwd_kernel[grid_chunk_cs](
dt, A, dt_bias, dt_out, dA_cumsum,
batch, seqlen, nheads, chunk_size,
dt_limit[0], dt_limit[1],
dt.stride(0), dt.stride(1), dt.stride(2),
A.stride(0),
dt_bias.stride(0) if dt_bias is not None else 0,
dt_out.stride(0), dt_out.stride(2), dt_out.stride(1), dt_out.stride(3),
dA_cumsum.stride(0), dA_cumsum.stride(2), dA_cumsum.stride(1), dA_cumsum.stride(3),
dt_softplus,
HAS_DT_BIAS=dt_bias is not None,
BLOCK_SIZE_CHUNK=triton.next_power_of_2(chunk_size),
)
return dA_cumsum, dt_out
def _chunk_cumsum_bwd(ddA, ddt_out, dt, A, dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf")), ddt=None):
batch, seqlen, nheads = dt.shape
_, _, nchunks, chunk_size = ddA.shape
assert ddA.shape == (batch, nheads, nchunks, chunk_size)
assert ddt_out.shape == (batch, nheads, nchunks, chunk_size)
assert A.shape == (nheads,)
if dt_bias is not None:
assert dt_bias.shape == (nheads,)
ddt_bias = torch.empty_like(dt_bias, dtype=torch.float32)
else:
ddt_bias = None
if ddt is not None:
assert ddt.shape == dt.shape
else:
ddt = torch.empty_like(dt)
dA = torch.empty_like(A, dtype=torch.float32)
grid_chunk_cs = lambda META: (batch, nchunks, triton.cdiv(nheads, META['BLOCK_SIZE_H']))
with torch.cuda.device(dt.device.index):
_chunk_cumsum_bwd_kernel[grid_chunk_cs](
ddA, ddt_out, dt, A, dt_bias, ddt, dA, ddt_bias,
batch, seqlen, nheads, chunk_size,
dt_limit[0], dt_limit[1],
ddA.stride(0), ddA.stride(2), ddA.stride(1), ddA.stride(3),
ddt_out.stride(0), ddt_out.stride(2), ddt_out.stride(1), ddt_out.stride(3),
dt.stride(0), dt.stride(1), dt.stride(2),
A.stride(0),
dt_bias.stride(0) if dt_bias is not None else 0,
ddt.stride(0), ddt.stride(1), ddt.stride(2),
dA.stride(0),
ddt_bias.stride(0) if ddt_bias is not None else 0,
dt_softplus,
HAS_DT_BIAS=dt_bias is not None,
BLOCK_SIZE_CHUNK=triton.next_power_of_2(chunk_size),
)
return ddt, dA, ddt_bias
def _chunk_state_fwd(B, x, dt, dA_cumsum, seq_idx=None, states=None, states_in_fp32=True):
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert dt.shape == (batch, nheads, nchunks, chunk_size)
assert dA_cumsum.shape == dt.shape
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if states is not None:
assert states.shape == (batch, nchunks, nheads, headdim, dstate)
else:
states_dtype = torch.float32 if states_in_fp32 else B.dtype
states = torch.empty((batch, nchunks, nheads, headdim, dstate), device=x.device, dtype=states_dtype)
grid = lambda META: (triton.cdiv(headdim, META['BLOCK_SIZE_M']) * triton.cdiv(dstate, META['BLOCK_SIZE_N']),
batch * nchunks, nheads)
with torch.cuda.device(x.device.index):
_chunk_state_fwd_kernel[grid](
x, B, states, dt, dA_cumsum, seq_idx,
headdim, dstate, chunk_size,
batch, seqlen, nheads // ngroups,
x.stride(0), x.stride(1), x.stride(2), x.stride(3),
B.stride(0), B.stride(1), B.stride(2), B.stride(-1),
states.stride(0), states.stride(1), states.stride(2), states.stride(3), states.stride(4),
dt.stride(0), dt.stride(2), dt.stride(1), dt.stride(3),
dA_cumsum.stride(0), dA_cumsum.stride(2), dA_cumsum.stride(1), dA_cumsum.stride(3),
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
HAS_SEQ_IDX=seq_idx is not None,
)
return states
def _chunk_state_bwd_dx(B, x, dt, dA_cumsum, dstates, dx=None):
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert dt.shape == (batch, nheads, nchunks, chunk_size)
assert dA_cumsum.shape == dt.shape
assert dstates.shape == (batch, nchunks, nheads, headdim, dstate)
if dx is not None:
assert dx.shape == x.shape
else:
dx = torch.empty_like(x)
ddt = torch.empty(batch, nheads, nchunks, chunk_size, device=dt.device, dtype=torch.float32)
ddA_cumsum = torch.empty(batch, nheads, nchunks, chunk_size, device=dA_cumsum.device, dtype=torch.float32)
grid_dx = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(headdim, META['BLOCK_SIZE_N']),
batch * nchunks, nheads)
with torch.cuda.device(x.device.index):
_chunk_state_bwd_dx_kernel[grid_dx](
x, B, dstates, dt, dA_cumsum, dx, ddt, ddA_cumsum,
chunk_size, headdim, dstate,
batch, seqlen, nheads // ngroups,
x.stride(0), x.stride(1), x.stride(2), x.stride(3),
B.stride(0), B.stride(1), B.stride(2), B.stride(-1),
dstates.stride(0), dstates.stride(1), dstates.stride(2), dstates.stride(3), dstates.stride(4),
dt.stride(0), dt.stride(2), dt.stride(1), dt.stride(3),
dA_cumsum.stride(0), dA_cumsum.stride(2), dA_cumsum.stride(1), dA_cumsum.stride(3),
dx.stride(0), dx.stride(1), dx.stride(2), dx.stride(3),
ddt.stride(0), ddt.stride(2), ddt.stride(1), ddt.stride(3),
ddA_cumsum.stride(0), ddA_cumsum.stride(2), ddA_cumsum.stride(1), ddA_cumsum.stride(3),
BLOCK_SIZE_DSTATE=max(triton.next_power_of_2(dstate), 16),
)
return dx, ddt.to(dt.dtype), ddA_cumsum.to(dA_cumsum.dtype)
def _chunk_state_bwd_db(x, dt, dA_cumsum, dstates, seq_idx=None, B=None, ngroups=1):
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
dstate = dstates.shape[-1]
assert dt.shape == (batch, nheads, nchunks, chunk_size)
assert dA_cumsum.shape == dt.shape
assert dstates.shape == (batch, nchunks, nheads, headdim, dstate)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if B is not None:
assert B.shape == (batch, seqlen, ngroups, dstate)
B_strides = (B.stride(0), B.stride(1), B.stride(2), B.stride(3))
# Use torch.empty since the Triton kernel will call init_to_zero
ddA_cumsum = torch.empty(batch, nheads, nchunks, chunk_size, device=x.device, dtype=torch.float32)
ddA_cumsum_strides = (ddA_cumsum.stride(0), ddA_cumsum.stride(2), ddA_cumsum.stride(1), ddA_cumsum.stride(3))
else:
B_strides = (0, 0, 0, 0)
ddA_cumsum = None
ddA_cumsum_strides = (0, 0, 0, 0)
nheads_ngroups_ratio = nheads // ngroups
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
nheads_per_program = max(min(math.ceil(batch * nchunks * nheads / sm_count), nheads_ngroups_ratio), 1)
nsplits = triton.cdiv(nheads_ngroups_ratio, nheads_per_program)
dB = torch.empty(batch, seqlen, nsplits, ngroups, dstate, device=x.device, dtype=torch.float32)
grid_db = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(dstate, META['BLOCK_SIZE_N']),
batch * nchunks, nsplits * ngroups)
with torch.cuda.device(x.device.index):
_chunk_state_bwd_db_kernel[grid_db](
x, dstates, B, dt, dA_cumsum, seq_idx, dB, ddA_cumsum,
chunk_size, dstate, headdim,
batch, seqlen, nheads, nheads_per_program, ngroups,
x.stride(0), x.stride(1), x.stride(2), x.stride(3),
dstates.stride(0), dstates.stride(1), dstates.stride(2), dstates.stride(3), dstates.stride(4),
*B_strides,
dt.stride(0), dt.stride(2), dt.stride(1), dt.stride(3),
dA_cumsum.stride(0), dA_cumsum.stride(2), dA_cumsum.stride(1), dA_cumsum.stride(3),
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
dB.stride(0), dB.stride(1), dB.stride(2), dB.stride(3), dB.stride(4),
*ddA_cumsum_strides,
HAS_DDA_CS=ddA_cumsum is not None,
HAS_SEQ_IDX=seq_idx is not None,
BLOCK_SIZE_K=max(triton.next_power_of_2(headdim), 16),
)
dB = dB.sum(2)
if ddA_cumsum is not None:
# The first element of ddA_cumsum is always zero, since that dA_cumsum does not contribute
# to the state of the chunk.
# torch.cumsum(ddA_cumsum[..., 1:], dim=-1, out=ddA_cumsum[..., 1:])
# But it's easier to just do the cumsum for all elements, the result will be the same.
torch.cumsum(ddA_cumsum, dim=-1, out=ddA_cumsum)
return dB if B is None else (dB, ddA_cumsum)
def _chunk_state_bwd_ddAcs_stable(B, x, dt, dA_cumsum, dstates, seq_idx=None):
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert dt.shape == (batch, nheads, nchunks, chunk_size)
assert dA_cumsum.shape == dt.shape
assert dstates.shape == (batch, nchunks, nheads, headdim, dstate)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
# Use torch.empty since the Triton kernel will call init_to_zero
ddA_cumsum = torch.empty(batch, nheads, nchunks, chunk_size, device=x.device, dtype=torch.float32)
grid_ddtcs = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(headdim, META['BLOCK_SIZE_N']),
batch * nchunks, nheads)
with torch.cuda.device(x.device.index):
_chunk_state_bwd_ddAcs_stable_kernel[grid_ddtcs](
x, B, dstates, dt, dA_cumsum, seq_idx, ddA_cumsum,
chunk_size, headdim, dstate,
batch, seqlen, nheads // ngroups,
x.stride(0), x.stride(1), x.stride(2), x.stride(3),
B.stride(0), B.stride(1), B.stride(2), B.stride(-1),
dstates.stride(0), dstates.stride(1), dstates.stride(2), dstates.stride(3), dstates.stride(4),
dt.stride(0), dt.stride(2), dt.stride(1), dt.stride(3),
dA_cumsum.stride(0), dA_cumsum.stride(2), dA_cumsum.stride(1), dA_cumsum.stride(3),
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
ddA_cumsum.stride(0), ddA_cumsum.stride(2), ddA_cumsum.stride(1), ddA_cumsum.stride(3),
HAS_SEQ_IDX=seq_idx is not None,
BLOCK_SIZE_M=max(triton.next_power_of_2(chunk_size), 16),
BLOCK_SIZE_DSTATE=max(triton.next_power_of_2(dstate), 16),
)
torch.cumsum(ddA_cumsum[..., 1:], dim=-1, out=ddA_cumsum[..., 1:])
return ddA_cumsum
def chunk_state_varlen(B, x, dt, dA_cumsum, cu_seqlens, chunk_states):
total_seqlen, nheads, headdim = x.shape
_, nchunks, chunk_size = dt.shape
_, ngroups, dstate = B.shape
batch = cu_seqlens.shape[0] - 1
cu_seqlens = cu_seqlens.contiguous()
assert nheads % ngroups == 0
assert B.shape == (total_seqlen, ngroups, dstate)
assert dt.shape == (nheads, nchunks, chunk_size)
assert dA_cumsum.shape == dt.shape
assert chunk_states.shape == (nchunks, nheads, headdim, dstate)
states = torch.empty(batch, nheads, headdim, dstate, dtype=chunk_states.dtype, device=chunk_states.device)
grid = lambda META: (triton.cdiv(headdim, META['BLOCK_SIZE_M']) * triton.cdiv(dstate, META['BLOCK_SIZE_N']),
batch, nheads)
with torch.cuda.device(x.device.index):
_chunk_state_varlen_kernel[grid](
x, B, dt, dA_cumsum, chunk_states, cu_seqlens, states,
headdim, dstate, chunk_size,
total_seqlen, nheads // ngroups,
x.stride(0), x.stride(1), x.stride(2),
B.stride(0), B.stride(1), B.stride(2),
dt.stride(1), dt.stride(0), dt.stride(2),
dA_cumsum.stride(1), dA_cumsum.stride(0), dA_cumsum.stride(2),
chunk_states.stride(0), chunk_states.stride(1), chunk_states.stride(2), chunk_states.stride(3),
states.stride(0), states.stride(1), states.stride(2), states.stride(3),
)
return states
class ChunkStateFn(torch.autograd.Function):
@staticmethod
def forward(ctx, B, x, dt, dA_cumsum, states_in_fp32=True):
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
assert seqlen <= nchunks * chunk_size
_, _, ngroups, dstate = B.shape
assert B.shape == (batch, seqlen, ngroups, dstate)
assert dt.shape == (batch, nheads, nchunks, chunk_size)
assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
if B.stride(-1) != 1:
B = B.contiguous()
if x.stride(-1) != 1 and x.stride(1) != 1: # Either M or K dimension should be contiguous
x = x.contiguous()
states = _chunk_state_fwd(B, x, dt, dA_cumsum, states_in_fp32=states_in_fp32)
ctx.save_for_backward(B, x, dt, dA_cumsum)
return states
@staticmethod
def backward(ctx, dstates):
B, x, dt, dA_cumsum = ctx.saved_tensors
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
_, _, ngroups, dstate = B.shape
assert dstates.shape == (batch, nchunks, nheads, headdim, dstate)
if dstates.stride(-1) != 1:
dstates = dstates.contiguous()
dx, ddt, ddA_cumsum = _chunk_state_bwd_dx(B, x, dt, dA_cumsum, dstates)
dB = _chunk_state_bwd_db(x, dt, dA_cumsum, dstates, ngroups=ngroups)
dB = dB.to(B.dtype)
return dB, dx, ddt, ddA_cumsum, None
def chunk_state(B, x, dt, dA_cumsum, states_in_fp32=True):
"""
Argument:
B: (batch, seqlen, ngroups, headdim)
x: (batch, seqlen, nheads, headdim)
dt: (batch, nheads, nchunks, chunk_size)
dA_cumsum: (batch, nheads, nchunks, chunk_size)
Return:
states: (batch, nchunks, nheads, headdim, dstate)
"""
return ChunkStateFn.apply(B, x, dt, dA_cumsum, states_in_fp32)
def chunk_state_ref(B, x, dt, dA_cumsum):
"""
Argument:
B: (batch, seqlen, ngroups, headdim)
x: (batch, seqlen, nheads, headdim)
dt: (batch, nheads, nchunks, chunk_size)
dA_cumsum: (batch, nheads, nchunks, chunk_size)
Return:
states: (batch, nchunks, nheads, headdim, dstate)
"""
# Check constraints.
batch, seqlen, nheads, headdim = x.shape
dstate = B.shape[-1]
_, _, nchunks, chunk_size = dt.shape
assert seqlen <= nchunks * chunk_size
assert x.shape == (batch, seqlen, nheads, headdim)
assert dt.shape == (batch, nheads, nchunks, chunk_size)
ngroups = B.shape[2]
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
B = repeat(B, "b l g d -> b l (g h) d", h=nheads // ngroups)
assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
if seqlen < nchunks * chunk_size:
x = F.pad(x, (0, 0, 0, 0, 0, nchunks * chunk_size - seqlen))
B = F.pad(B, (0, 0, 0, 0, 0, nchunks * chunk_size - seqlen))
x = rearrange(x, "b (c l) h p -> b c l h p", l=chunk_size)
B = rearrange(B, "b (c l) ... -> b c l ...", l=chunk_size)
decay_states = torch.exp((dA_cumsum[:, :, :, -1:] - dA_cumsum))
return torch.einsum("bclhn,bhcl,bhcl,bclhp->bchpn", B.to(x.dtype), decay_states.to(x.dtype), dt.to(x.dtype), x)
|