Sonia2k5 commited on
Commit
2b04b62
·
verified ·
1 Parent(s): 0d47ec3

Upload app (6).py

Browse files
Files changed (1) hide show
  1. app (6).py +32 -0
app (6).py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import joblib
4
+ import numpy as np
5
+
6
+ # Load the trained model
7
+ model = joblib.load("iris_decision_tree.pkl")
8
+
9
+ # Prediction function
10
+ def predict_species(sepal_length, sepal_width, petal_length, petal_width):
11
+ input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
12
+ prediction = model.predict(input_data)[0]
13
+ species = ["setosa", "versicolor", "virginica"]
14
+ return f"The predicted Iris species is: 🌸 {species[prediction]}"
15
+
16
+ # Gradio interface
17
+ iface = gr.Interface(
18
+ fn=predict_species,
19
+ inputs=[
20
+ gr.Number(label="Sepal Length (cm)"),
21
+ gr.Number(label="Sepal Width (cm)"),
22
+ gr.Number(label="Petal Length (cm)"),
23
+ gr.Number(label="Petal Width (cm)")
24
+ ],
25
+ outputs=gr.Textbox(label="Prediction"),
26
+ title="Iris Flower Species Predictor",
27
+ description="Enter flower measurements to predict its species using a Decision Tree model."
28
+ )
29
+
30
+ # Launch the app
31
+ if __name__ == "__main__":
32
+ iface.launch()