Sonia2k5 commited on
Commit
f1fd30a
Β·
verified Β·
1 Parent(s): 57188d0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -11,4 +11,45 @@ license: mit
11
  short_description: To predict next number by sequence
12
  ---
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
11
  short_description: To predict next number by sequence
12
  ---
13
 
14
+ # πŸ”’ Next Number Predictor using LSTM
15
+
16
+ This is a simple Gradio web app that uses a trained LSTM model to predict the **next number** in a sequence.
17
+
18
+ ---
19
+
20
+ ## πŸš€ Features
21
+
22
+ - Predicts the next number given a fixed-length numeric sequence.
23
+ - Clean and interactive Gradio interface.
24
+ - Easy to run locally or deploy to platforms like Hugging Face Spaces.
25
+
26
+ ---
27
+
28
+ ## πŸ“ Files Included
29
+
30
+ - `main.py` – The Gradio web app script.
31
+ - `requirements.txt` – Python dependencies.
32
+ - `next_number_model.h5` – Your trained LSTM model (not included in this repo – you must provide your own).
33
+
34
+ ---
35
+
36
+ ## πŸ“₯ Example Input
37
+
38
+ If your model was trained with a **window size of 3**, enter:
39
+
40
+ example code:
41
+
42
+ from tensorflow.keras.models import Sequential
43
+ from tensorflow.keras.layers import LSTM, Dense
44
+
45
+ model = Sequential([
46
+ LSTM(50, activation='relu', input_shape=(3, 1)),
47
+ Dense(1)
48
+ ])
49
+
50
+ model.compile(optimizer='adam', loss='mse')
51
+ model.fit(X_train, y_train, epochs=200, verbose=1)
52
+ model.save("next_number_model.h5")
53
+
54
+
55
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference