import numpy as np import gradio as gr from tensorflow import keras # Load your Keras model model = keras.models.load_model("model.keras") # Ensure this file is uploaded to the Space # Define prediction function def predict(input_string): try: # Convert user input (comma-separated) into a NumPy array input_array = np.array([float(x.strip()) for x in input_string.split(',')]) input_array = input_array.reshape(1, -1) # Reshape for model prediction = model.predict(input_array) return prediction.tolist() except Exception as e: return f"Error: {str(e)}" # Define Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Textbox(label="Enter comma-separated input values"), outputs=gr.Textbox(label="Model Prediction"), title="Keras Model Predictor", description="Enter input values (e.g., 1.2, 2.4, 3.6) for prediction" ) # Launch the app if __name__ == "__main__": iface.launch()