Spaces:
Sleeping
Sleeping
File size: 1,714 Bytes
28d03d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from transformers import pipeline
import gradio as gr
# Load sentiment and NER pipelines
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
ner_tagger = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
# Supported translation models
translation_models = {
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
"French": "Helsinki-NLP/opus-mt-en-fr"
}
# Load translation pipelines
translation_pipelines = {
lang: pipeline("translation", model=model_id)
for lang, model_id in translation_models.items()
}
def nlp_assistant(sentence, language):
sentiment_result = sentiment_analyzer(sentence)[0]
sentiment = f"{sentiment_result['label']} (Confidence: {sentiment_result['score']:.2f})"
ner_result = ner_tagger(sentence)
named_entities = "\n".join([f"{ent['word']} ({ent['entity_group']})" for ent in ner_result]) if ner_result else "No named entities found."
translator = translation_pipelines[language]
translation = translator(sentence)[0]['translation_text']
return sentiment, named_entities, translation
iface = gr.Interface(
fn=nlp_assistant,
inputs=[
gr.Textbox(lines=2, label="Enter an English sentence"),
gr.Dropdown(choices=list(translation_models.keys()), label="Choose Translation Language")
],
outputs=[
gr.Textbox(label="π§ Sentiment Analysis"),
gr.Textbox(label="π Named Entity Recognition"),
gr.Textbox(label="π Translation")
],
title="π§ Mini NLP AI Assistant",
description="Analyze sentiment, detect named entities, and translate to Hindi or French using Hugging Face Transformers."
)
iface.launch()
|