Spaces:
Sleeping
Sleeping
File size: 2,109 Bytes
d5235eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# -*- coding: utf-8 -*-
"""stockpriceprediction_RNN.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1WNG8vH1hyyxmR3_BEtT9-c0Golei-f4d
"""
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
import gradio as gr
# 1. Generate dummy data
def generate_dummy_data():
x = np.linspace(0, 100, 500)
y = np.sin(x / 5) + np.random.normal(scale=0.1, size=len(x))
return y
data = generate_dummy_data()
# 2. Prepare dataset (with time_steps = 5)
def create_dataset(data, time_steps=5): # π changed from 10 to 5
X, y = [], []
for i in range(len(data) - time_steps):
X.append(data[i:i + time_steps])
y.append(data[i + time_steps])
return np.array(X), np.array(y)
X, y = create_dataset(data)
X = X.reshape((X.shape[0], X.shape[1], 1))
# 3. Build model for input shape (5, 1)
model = Sequential([
SimpleRNN(50, activation='relu', input_shape=(5, 1)), # π changed from (10, 1) to (5, 1)
Dense(1)
])
model.compile(optimizer='adam', loss='mse')
model.fit(X, y, epochs=10, verbose=0)
import pickle
with open('stock.pkl', 'wb') as file:
pickle.dump(model,file)
with open('stock.pkl', 'rb') as f:
loaded_model = pickle.load(f)
# 4. Predict function
def predict_next_price(seq):
try:
seq = [float(i.strip()) for i in seq.split(',')]
if len(seq) != 5: # π only 5 numbers expected now
return "Please enter exactly 5 numbers."
input_seq = np.array(seq).reshape((1, 5, 1)) # π reshape accordingly
pred = model.predict(input_seq)
return f"π Predicted next price: {pred[0][0]:.4f}"
except Exception as e:
return f"Error: {str(e)}"
# 5. Gradio UI
iface = gr.Interface(
fn=predict_next_price,
inputs=gr.Textbox(lines=2, placeholder="Enter 5 stock prices, comma-separated"),
outputs="text",
title="π Stock Price Predictor (RNN)",
description="Enter 5 stock prices to predict the next one."
)
iface.launch() |