Sonia2k5 commited on
Commit
d47d7e1
·
verified ·
1 Parent(s): 6e7f3d5

Upload app (9).py

Browse files
Files changed (1) hide show
  1. app (9).py +77 -0
app (9).py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """app.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1vvN4x-mEuGtdgL2zlzu2ci6sercypfCa
8
+ """
9
+
10
+ import numpy as np
11
+ import pandas as pd
12
+ import gradio as gr
13
+ from keras.models import Sequential
14
+ from keras.layers import SimpleRNN, Dense
15
+ from sklearn.preprocessing import MinMaxScaler
16
+
17
+ # Generate dummy stock price data
18
+ def generate_dummy_data():
19
+ np.random.seed(0)
20
+ time_steps = 100
21
+ x = np.linspace(0, 20, time_steps)
22
+ prices = 50 + np.sin(x) * 10 + np.random.normal(0, 1, time_steps)
23
+ return prices
24
+
25
+ # Preprocess data
26
+ def prepare_data(data, window_size):
27
+ X, y = [], []
28
+ for i in range(len(data) - window_size):
29
+ X.append(data[i:i + window_size])
30
+ y.append(data[i + window_size])
31
+ return np.array(X), np.array(y)
32
+
33
+ # Create and train RNN model
34
+ def train_model():
35
+ raw_prices = generate_dummy_data().reshape(-1, 1)
36
+ scaler = MinMaxScaler()
37
+ scaled_prices = scaler.fit_transform(raw_prices)
38
+
39
+ window_size = 5
40
+ X, y = prepare_data(scaled_prices, window_size)
41
+ X = X.reshape((X.shape[0], X.shape[1], 1))
42
+
43
+ model = Sequential([
44
+ SimpleRNN(50, activation='relu', input_shape=(window_size, 1)),
45
+ Dense(1)
46
+ ])
47
+
48
+ model.compile(optimizer='adam', loss='mse')
49
+ model.fit(X, y, epochs=30, verbose=0)
50
+
51
+ return model, scaler, window_size
52
+
53
+ model, scaler, window_size = train_model()
54
+
55
+ # Prediction function for Gradio
56
+ def predict_next_prices(inputs):
57
+ inputs = [float(i) for i in inputs.split(',')]
58
+ if len(inputs) != window_size:
59
+ return f"Please enter {window_size} comma-separated values."
60
+
61
+ input_array = np.array(inputs).reshape(-1, 1)
62
+ scaled_input = scaler.transform(input_array).reshape((1, window_size, 1))
63
+ scaled_prediction = model.predict(scaled_input)[0][0]
64
+ predicted_price = scaler.inverse_transform([[scaled_prediction]])[0][0]
65
+ return f"Predicted Next Price: ₹{predicted_price:.2f}"
66
+
67
+ # Gradio Interface
68
+ demo = gr.Interface(
69
+ fn=predict_next_prices,
70
+ inputs=gr.Textbox(label=f"Enter last {window_size} stock prices (comma-separated)"),
71
+ outputs="text",
72
+ title="RNN Stock Price Predictor (Dummy Data)",
73
+ description="Enter previous prices to predict the next value."
74
+ )
75
+
76
+ if __name__ == "__main__":
77
+ demo.launch()