Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,6 +30,22 @@ STANDARD_COLORS = {
|
|
30 |
'WORK OF ART': '#DDA0DD' # Plum
|
31 |
}
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Additional colours for custom entities
|
34 |
CUSTOM_COLOR_PALETTE = [
|
35 |
'#FF9F43', '#10AC84', '#EE5A24', '#0FBC89', '#5F27CD',
|
@@ -730,9 +746,34 @@ def process_text(text, standard_entities, custom_entities_str, confidence_thresh
|
|
730 |
|
731 |
return summary, legend_html + highlighted_html, results_html
|
732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
# Create Gradio interface
|
734 |
def create_interface():
|
735 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
736 |
gr.Markdown("""
|
737 |
# π― Hybrid NER + Custom GLiNER Entity Recognition Tool
|
738 |
|
@@ -744,7 +785,7 @@ def create_interface():
|
|
744 |
1. **π Enter your text** in the text area below
|
745 |
2. **π― Select a model** from the dropdown for common entities
|
746 |
3. **βοΈ Select common entities** you want to find (PER, ORG, LOC, etc.)
|
747 |
-
4. **β¨ Add custom entities** (comma-separated) like "relationships, occupations, skills"
|
748 |
5. **βοΈ Adjust confidence threshold**
|
749 |
6. **π Click "Analyse Text"** to see results with organized output
|
750 |
""")
|
@@ -771,6 +812,14 @@ def create_interface():
|
|
771 |
with gr.Column():
|
772 |
gr.Markdown("### π― Common Entity Types")
|
773 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
774 |
# Model selector
|
775 |
model_dropdown = gr.Dropdown(
|
776 |
choices=ner_manager.model_names,
|
@@ -779,11 +828,39 @@ def create_interface():
|
|
779 |
info="Choose which model to use for common NER"
|
780 |
)
|
781 |
|
782 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
783 |
standard_entities = gr.CheckboxGroup(
|
784 |
-
choices=
|
785 |
-
value=['PER', 'ORG', 'LOC', 'MISC'], # Default selection
|
786 |
-
label="Select Common Entities"
|
|
|
787 |
)
|
788 |
|
789 |
# Select/Deselect All button
|
@@ -797,7 +874,7 @@ def create_interface():
|
|
797 |
return [], "βοΈ Select All"
|
798 |
else:
|
799 |
# If none selected, select all
|
800 |
-
return
|
801 |
|
802 |
select_all_btn.click(
|
803 |
fn=toggle_all_entities,
|
@@ -806,7 +883,7 @@ def create_interface():
|
|
806 |
)
|
807 |
|
808 |
with gr.Column():
|
809 |
-
gr.Markdown("### β¨ Custom Entity Types")
|
810 |
custom_entities = gr.Textbox(
|
811 |
label="Custom Entities (comma-separated)",
|
812 |
placeholder="e.g. relationships, occupations, skills, emotions",
|
@@ -818,6 +895,8 @@ def create_interface():
|
|
818 |
- emotions, actions, objects
|
819 |
- medical conditions, treatments
|
820 |
- financial terms, business roles
|
|
|
|
|
821 |
""")
|
822 |
|
823 |
analyse_btn = gr.Button("π Analyse Text", variant="primary", size="lg")
|
@@ -835,9 +914,15 @@ def create_interface():
|
|
835 |
gr.Markdown("### π Detailed Results")
|
836 |
results_output = gr.HTML(label="Entity Results")
|
837 |
|
|
|
|
|
|
|
|
|
|
|
|
|
838 |
# Connect the button to the processing function
|
839 |
analyse_btn.click(
|
840 |
-
fn=
|
841 |
inputs=[
|
842 |
text_input,
|
843 |
standard_entities,
|
@@ -853,21 +938,21 @@ def create_interface():
|
|
853 |
examples=[
|
854 |
[
|
855 |
"John Smith works at Google in New York. He graduated from Stanford University in 2015 and specialises in artificial intelligence research. His wife Sarah is a doctor at Mount Sinai Hospital.",
|
856 |
-
["PER", "ORG", "LOC", "DATE"],
|
857 |
"relationships, occupations, educational background",
|
858 |
0.3,
|
859 |
"entities_spacy_en_core_web_trf"
|
860 |
],
|
861 |
[
|
862 |
"The meeting between CEO Jane Doe and the board of directors at Microsoft headquarters in Seattle discussed the Q4 financial results and the new AI strategy for 2024.",
|
863 |
-
["PER", "ORG", "LOC", "DATE"],
|
864 |
"corporate roles, business events, financial terms",
|
865 |
0.4,
|
866 |
"entities_flair_ner-ontonotes-large"
|
867 |
],
|
868 |
[
|
869 |
"Dr. Emily Watson published a research paper on machine learning algorithms at MIT. She collaborates with her colleague Prof. David Chen on natural language processing projects.",
|
870 |
-
["PER", "ORG", "Work of Art"],
|
871 |
"academic titles, research topics, collaborations",
|
872 |
0.3,
|
873 |
"entities_gliner_knowledgator/modern-gliner-bi-large-v1.0"
|
@@ -881,6 +966,37 @@ def create_interface():
|
|
881 |
model_dropdown
|
882 |
]
|
883 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
884 |
|
885 |
return demo
|
886 |
|
|
|
30 |
'WORK OF ART': '#DDA0DD' # Plum
|
31 |
}
|
32 |
|
33 |
+
# Entity definitions for glossary
|
34 |
+
ENTITY_DEFINITIONS = {
|
35 |
+
'DATE': 'Absolute or relative dates or periods',
|
36 |
+
'EVENT': 'Named hurricanes, battles, wars, sports events, etc.',
|
37 |
+
'FAC': 'Facilities - Buildings, airports, highways, bridges, etc.',
|
38 |
+
'GPE': 'Geopolitical entities - Countries, cities, states',
|
39 |
+
'LANG': 'Any named language',
|
40 |
+
'LOC': 'Non-GPE locations - Mountain ranges, bodies of water',
|
41 |
+
'MISC': 'Miscellaneous entities - Things that don\'t fit elsewhere',
|
42 |
+
'NORP': 'Nationalities or religious or political groups',
|
43 |
+
'ORG': 'Organizations - Companies, agencies, institutions, etc.',
|
44 |
+
'PER': 'People, including fictional characters',
|
45 |
+
'PRODUCT': 'Objects, vehicles, foods, etc. (Not services)',
|
46 |
+
'Work of Art': 'Titles of books, songs, movies, paintings, etc.'
|
47 |
+
}
|
48 |
+
|
49 |
# Additional colours for custom entities
|
50 |
CUSTOM_COLOR_PALETTE = [
|
51 |
'#FF9F43', '#10AC84', '#EE5A24', '#0FBC89', '#5F27CD',
|
|
|
746 |
|
747 |
return summary, legend_html + highlighted_html, results_html
|
748 |
|
749 |
+
# Create colored checkbox labels
|
750 |
+
def create_colored_checkbox_labels():
|
751 |
+
"""Create checkbox labels with color indicators"""
|
752 |
+
labels = []
|
753 |
+
for entity in STANDARD_ENTITIES:
|
754 |
+
colour_key = "WORK OF ART" if entity == "Work of Art" else entity.upper()
|
755 |
+
colour = STANDARD_COLORS.get(colour_key, '#CCCCCC')
|
756 |
+
# Create label with color dot
|
757 |
+
labels.append(f"β {entity}")
|
758 |
+
return labels
|
759 |
+
|
760 |
# Create Gradio interface
|
761 |
def create_interface():
|
762 |
+
# Custom CSS for colored checkboxes
|
763 |
+
custom_css = """
|
764 |
+
/* Color the checkbox labels based on entity type */
|
765 |
+
"""
|
766 |
+
for i, entity in enumerate(STANDARD_ENTITIES):
|
767 |
+
colour_key = "WORK OF ART" if entity == "Work of Art" else entity.upper()
|
768 |
+
colour = STANDARD_COLORS.get(colour_key, '#CCCCCC')
|
769 |
+
custom_css += f"""
|
770 |
+
label[for="checkbox-{i}"] span:first-child {{
|
771 |
+
color: {colour} !important;
|
772 |
+
font-weight: bold;
|
773 |
+
}}
|
774 |
+
"""
|
775 |
+
|
776 |
+
with gr.Blocks(title="Hybrid NER + GLiNER Tool", theme=gr.themes.Soft(), css=custom_css) as demo:
|
777 |
gr.Markdown("""
|
778 |
# π― Hybrid NER + Custom GLiNER Entity Recognition Tool
|
779 |
|
|
|
785 |
1. **π Enter your text** in the text area below
|
786 |
2. **π― Select a model** from the dropdown for common entities
|
787 |
3. **βοΈ Select common entities** you want to find (PER, ORG, LOC, etc.)
|
788 |
+
4. **β¨ Add custom entities** (comma-separated) like "relationships, occupations, skills" - powered by GLiNER
|
789 |
5. **βοΈ Adjust confidence threshold**
|
790 |
6. **π Click "Analyse Text"** to see results with organized output
|
791 |
""")
|
|
|
812 |
with gr.Column():
|
813 |
gr.Markdown("### π― Common Entity Types")
|
814 |
|
815 |
+
# Add the inline help text
|
816 |
+
gr.HTML("""
|
817 |
+
<div style="background-color: #e3f2fd; padding: 10px; border-radius: 5px; margin-bottom: 10px; font-size: 13px;">
|
818 |
+
<strong>Quick Guide:</strong> PER = People | ORG = Organizations | LOC = Locations |
|
819 |
+
GPE = Countries/Cities | FAC = Facilities | DATE = Dates | EVENT = Named Events
|
820 |
+
</div>
|
821 |
+
""")
|
822 |
+
|
823 |
# Model selector
|
824 |
model_dropdown = gr.Dropdown(
|
825 |
choices=ner_manager.model_names,
|
|
|
828 |
info="Choose which model to use for common NER"
|
829 |
)
|
830 |
|
831 |
+
# Add collapsible glossary with colors
|
832 |
+
glossary_html = """
|
833 |
+
<details style="margin: 10px 0; padding: 10px; background-color: #f8f9fa; border-radius: 8px; border: 1px solid #ddd;">
|
834 |
+
<summary style="cursor: pointer; font-weight: bold; padding: 5px; color: #1976d2;">
|
835 |
+
βΉοΈ Detailed Entity Type Definitions (Click to expand)
|
836 |
+
</summary>
|
837 |
+
<div style="margin-top: 10px; padding: 10px;">
|
838 |
+
<dl style="margin: 0; font-size: 14px;">
|
839 |
+
"""
|
840 |
+
|
841 |
+
for entity, definition in ENTITY_DEFINITIONS.items():
|
842 |
+
colour_key = "WORK OF ART" if entity == "Work of Art" else entity.upper()
|
843 |
+
colour = STANDARD_COLORS.get(colour_key, '#CCCCCC')
|
844 |
+
glossary_html += f"""
|
845 |
+
<div style="margin-bottom: 8px;">
|
846 |
+
<dt style="font-weight: bold; display: inline; color: {colour};">{entity}:</dt>
|
847 |
+
<dd style="display: inline; margin-left: 5px;">{definition}</dd>
|
848 |
+
</div>
|
849 |
+
"""
|
850 |
+
|
851 |
+
glossary_html += """
|
852 |
+
</dl>
|
853 |
+
</div>
|
854 |
+
</details>
|
855 |
+
"""
|
856 |
+
gr.HTML(glossary_html)
|
857 |
+
|
858 |
+
# Common entities checkboxes with colored labels
|
859 |
standard_entities = gr.CheckboxGroup(
|
860 |
+
choices=create_colored_checkbox_labels(),
|
861 |
+
value=[f"β {entity}" for entity in ['PER', 'ORG', 'LOC', 'MISC']], # Default selection
|
862 |
+
label="Select Common Entities",
|
863 |
+
elem_id="standard-entities-checkbox"
|
864 |
)
|
865 |
|
866 |
# Select/Deselect All button
|
|
|
874 |
return [], "βοΈ Select All"
|
875 |
else:
|
876 |
# If none selected, select all
|
877 |
+
return create_colored_checkbox_labels(), "π Deselect All"
|
878 |
|
879 |
select_all_btn.click(
|
880 |
fn=toggle_all_entities,
|
|
|
883 |
)
|
884 |
|
885 |
with gr.Column():
|
886 |
+
gr.Markdown("### β¨ Custom Entity Types (Powered by GLiNER)")
|
887 |
custom_entities = gr.Textbox(
|
888 |
label="Custom Entities (comma-separated)",
|
889 |
placeholder="e.g. relationships, occupations, skills, emotions",
|
|
|
895 |
- emotions, actions, objects
|
896 |
- medical conditions, treatments
|
897 |
- financial terms, business roles
|
898 |
+
|
899 |
+
*GLiNER model will extract these custom entity types from your text*
|
900 |
""")
|
901 |
|
902 |
analyse_btn = gr.Button("π Analyse Text", variant="primary", size="lg")
|
|
|
914 |
gr.Markdown("### π Detailed Results")
|
915 |
results_output = gr.HTML(label="Entity Results")
|
916 |
|
917 |
+
# Function to process with colored labels
|
918 |
+
def process_with_colored_labels(text, colored_labels, custom_entities, confidence_threshold, selected_model, progress=gr.Progress()):
|
919 |
+
# Remove the color dots from labels
|
920 |
+
standard_entities = [label.replace("β ", "") for label in colored_labels]
|
921 |
+
return process_text(text, standard_entities, custom_entities, confidence_threshold, selected_model, progress)
|
922 |
+
|
923 |
# Connect the button to the processing function
|
924 |
analyse_btn.click(
|
925 |
+
fn=process_with_colored_labels,
|
926 |
inputs=[
|
927 |
text_input,
|
928 |
standard_entities,
|
|
|
938 |
examples=[
|
939 |
[
|
940 |
"John Smith works at Google in New York. He graduated from Stanford University in 2015 and specialises in artificial intelligence research. His wife Sarah is a doctor at Mount Sinai Hospital.",
|
941 |
+
[f"β {entity}" for entity in ["PER", "ORG", "LOC", "DATE"]],
|
942 |
"relationships, occupations, educational background",
|
943 |
0.3,
|
944 |
"entities_spacy_en_core_web_trf"
|
945 |
],
|
946 |
[
|
947 |
"The meeting between CEO Jane Doe and the board of directors at Microsoft headquarters in Seattle discussed the Q4 financial results and the new AI strategy for 2024.",
|
948 |
+
[f"β {entity}" for entity in ["PER", "ORG", "LOC", "DATE"]],
|
949 |
"corporate roles, business events, financial terms",
|
950 |
0.4,
|
951 |
"entities_flair_ner-ontonotes-large"
|
952 |
],
|
953 |
[
|
954 |
"Dr. Emily Watson published a research paper on machine learning algorithms at MIT. She collaborates with her colleague Prof. David Chen on natural language processing projects.",
|
955 |
+
[f"β {entity}" for entity in ["PER", "ORG", "Work of Art"]],
|
956 |
"academic titles, research topics, collaborations",
|
957 |
0.3,
|
958 |
"entities_gliner_knowledgator/modern-gliner-bi-large-v1.0"
|
|
|
966 |
model_dropdown
|
967 |
]
|
968 |
)
|
969 |
+
|
970 |
+
# Add model information links
|
971 |
+
gr.HTML("""
|
972 |
+
<hr style="margin-top: 40px; margin-bottom: 20px;">
|
973 |
+
<div style="background-color: #f8f9fa; padding: 20px; border-radius: 8px; margin-top: 20px;">
|
974 |
+
<h4 style="margin-top: 0;">π Model Information & Documentation</h4>
|
975 |
+
<p style="font-size: 14px; margin-bottom: 15px;">Learn more about the models used in this tool:</p>
|
976 |
+
<ul style="font-size: 14px; line-height: 1.8;">
|
977 |
+
<li><strong>entities_flair_ner-large:</strong>
|
978 |
+
<a href="https://huggingface.co/flair/ner-english-large" target="_blank" style="color: #1976d2;">
|
979 |
+
Flair NER English Large Model β
|
980 |
+
</a>
|
981 |
+
</li>
|
982 |
+
<li><strong>entities_spacy_en_core_web_trf:</strong>
|
983 |
+
<a href="https://spacy.io/models/en#en_core_web_trf" target="_blank" style="color: #1976d2;">
|
984 |
+
spaCy English Transformer Model β
|
985 |
+
</a>
|
986 |
+
</li>
|
987 |
+
<li><strong>entities_flair_ner-ontonotes-large:</strong>
|
988 |
+
<a href="https://huggingface.co/flair/ner-english-ontonotes-large" target="_blank" style="color: #1976d2;">
|
989 |
+
Flair OntoNotes Large Model β
|
990 |
+
</a>
|
991 |
+
</li>
|
992 |
+
<li><strong>entities_gliner_knowledgator/modern-gliner-bi-large-v1.0:</strong>
|
993 |
+
<a href="https://github.com/urchade/GLiNER/blob/main/README_Extended.md" target="_blank" style="color: #1976d2;">
|
994 |
+
GLiNER Extended Documentation β
|
995 |
+
</a>
|
996 |
+
</li>
|
997 |
+
</ul>
|
998 |
+
</div>
|
999 |
+
""")
|
1000 |
|
1001 |
return demo
|
1002 |
|