import gradio as gr
import torch
from gliner import GLiNER
import pandas as pd
import warnings
import random
import re
warnings.filterwarnings('ignore')
# Standard NER entity types
STANDARD_ENTITIES = [
'DATE', 'EVENT', 'FAC', 'GPE', 'LANG', 'LOC',
'MISC', 'NORP', 'ORG', 'PER', 'PRODUCT', 'WORK_OF_ART'
]
# Color schemes
STANDARD_COLORS = {
'DATE': '#FF6B6B', # Red
'EVENT': '#4ECDC4', # Teal
'FAC': '#45B7D1', # Blue
'GPE': '#F9CA24', # Yellow
'LANG': '#6C5CE7', # Purple
'LOC': '#A0E7E5', # Light Cyan
'MISC': '#FD79A8', # Pink
'NORP': '#8E8E93', # Grey
'ORG': '#55A3FF', # Light Blue
'PER': '#00B894', # Green
'PRODUCT': '#E17055', # Orange-Red
'WORK_OF_ART': '#DDA0DD' # Plum
}
# Additional colors for custom entities
CUSTOM_COLOR_PALETTE = [
'#FF9F43', '#10AC84', '#EE5A24', '#0FBC89', '#5F27CD',
'#FF3838', '#2F3640', '#3742FA', '#2ED573', '#FFA502',
'#FF6348', '#1E90FF', '#FF1493', '#32CD32', '#FFD700',
'#FF4500', '#DA70D6', '#00CED1', '#FF69B4', '#7B68EE'
]
class HybridNERManager:
def __init__(self):
self.gliner_model = None
self.spacy_model = None
self.all_entity_colors = {}
def load_gliner_model(self):
"""Load GLiNER model for custom entities"""
if self.gliner_model is None:
try:
# Use a more stable model for HF Spaces
self.gliner_model = GLiNER.from_pretrained("urchade/gliner_medium-v2.1")
print("✓ GLiNER model loaded successfully")
except Exception as e:
print(f"Error loading GLiNER model: {str(e)}")
return None
return self.gliner_model
def load_spacy_model(self):
"""Load spaCy model for standard NER"""
if self.spacy_model is None:
try:
import spacy
# Try to load the transformer model first, fallback to smaller model
try:
self.spacy_model = spacy.load("en_core_web_sm")
print("✓ spaCy model loaded successfully")
except OSError:
print("spaCy model not found. Using GLiNER for all entity types.")
return None
except Exception as e:
print(f"Error loading spaCy model: {str(e)}")
return None
return self.spacy_model
def assign_colors(self, standard_entities, custom_entities):
"""Assign colors to all entity types"""
self.all_entity_colors = {}
# Assign standard colors
for entity in standard_entities:
self.all_entity_colors[entity.upper()] = STANDARD_COLORS.get(entity, '#CCCCCC')
# Assign custom colors
for i, entity in enumerate(custom_entities):
if i < len(CUSTOM_COLOR_PALETTE):
self.all_entity_colors[entity.upper()] = CUSTOM_COLOR_PALETTE[i]
else:
# Generate random color if we run out
self.all_entity_colors[entity.upper()] = f"#{random.randint(0, 0xFFFFFF):06x}"
return self.all_entity_colors
def extract_spacy_entities(self, text, entity_types):
"""Extract entities using spaCy"""
model = self.load_spacy_model()
if model is None:
return []
try:
doc = model(text)
entities = []
for ent in doc.ents:
if ent.label_ in entity_types:
entities.append({
'text': ent.text,
'label': ent.label_,
'start': ent.start_char,
'end': ent.end_char,
'confidence': 1.0, # spaCy doesn't provide confidence scores
'source': 'spaCy'
})
return entities
except Exception as e:
print(f"Error with spaCy extraction: {str(e)}")
return []
def extract_gliner_entities(self, text, entity_types, threshold=0.3, is_custom=True):
"""Extract entities using GLiNER"""
model = self.load_gliner_model()
if model is None:
return []
try:
entities = model.predict_entities(text, entity_types, threshold=threshold)
result = []
for entity in entities:
result.append({
'text': entity['text'],
'label': entity['label'].upper(),
'start': entity['start'],
'end': entity['end'],
'confidence': entity.get('score', 0.0),
'source': 'GLiNER-Custom' if is_custom else 'GLiNER-Standard'
})
return result
except Exception as e:
print(f"Error with GLiNER extraction: {str(e)}")
return []
def find_overlapping_entities(entities):
"""Find and merge overlapping entities"""
if not entities:
return []
# Sort entities by start position
sorted_entities = sorted(entities, key=lambda x: x['start'])
merged_entities = []
i = 0
while i < len(sorted_entities):
current_entity = sorted_entities[i]
overlapping_entities = [current_entity]
# Find all entities that overlap with current entity
j = i + 1
while j < len(sorted_entities):
next_entity = sorted_entities[j]
# Check if entities overlap
if (current_entity['start'] <= next_entity['start'] < current_entity['end'] or
next_entity['start'] <= current_entity['start'] < next_entity['end'] or
current_entity['text'].lower() == next_entity['text'].lower()):
overlapping_entities.append(next_entity)
sorted_entities.pop(j)
else:
j += 1
# Create merged entity
if len(overlapping_entities) == 1:
merged_entities.append(overlapping_entities[0])
else:
merged_entity = merge_entities(overlapping_entities)
merged_entities.append(merged_entity)
i += 1
return merged_entities
def merge_entities(entity_list):
"""Merge multiple overlapping entities into one"""
if len(entity_list) == 1:
return entity_list[0]
# Use the entity with the longest text span as the base
base_entity = max(entity_list, key=lambda x: len(x['text']))
# Collect all labels and sources
labels = [entity['label'] for entity in entity_list]
sources = [entity['source'] for entity in entity_list]
confidences = [entity['confidence'] for entity in entity_list]
return {
'text': base_entity['text'],
'start': base_entity['start'],
'end': base_entity['end'],
'labels': labels,
'sources': sources,
'confidences': confidences,
'is_merged': True,
'entity_count': len(entity_list)
}
def create_highlighted_html(text, entities, entity_colors):
"""Create HTML with highlighted entities"""
if not entities:
return f"
"
# Find and merge overlapping entities
merged_entities = find_overlapping_entities(entities)
# Sort by start position
sorted_entities = sorted(merged_entities, key=lambda x: x['start'])
# Create HTML with highlighting
html_parts = []
last_end = 0
for entity in sorted_entities:
# Add text before entity
html_parts.append(text[last_end:entity['start']])
if entity.get('is_merged', False):
# Handle merged entity with multiple colors
html_parts.append(create_merged_entity_html(entity, entity_colors))
else:
# Handle single entity
html_parts.append(create_single_entity_html(entity, entity_colors))
last_end = entity['end']
# Add remaining text
html_parts.append(text[last_end:])
highlighted_text = ''.join(html_parts)
return f"""
📝 Text with Highlighted Entities
{highlighted_text}
"""
def create_single_entity_html(entity, entity_colors):
"""Create HTML for a single entity"""
label = entity['label']
color = entity_colors.get(label.upper(), '#CCCCCC')
confidence = entity.get('confidence', 0.0)
source = entity.get('source', 'Unknown')
return (f''
f'{entity["text"]}')
def create_merged_entity_html(entity, entity_colors):
"""Create HTML for a merged entity with multiple colors"""
labels = entity['labels']
sources = entity['sources']
confidences = entity['confidences']
# Get colors for each label
colors = []
for label in labels:
color = entity_colors.get(label.upper(), '#CCCCCC')
colors.append(color)
# Create gradient background
if len(colors) == 2:
gradient = f"linear-gradient(to right, {colors[0]} 50%, {colors[1]} 50%)"
else:
# For more colors, create equal segments
segment_size = 100 / len(colors)
gradient_parts = []
for i, color in enumerate(colors):
start = i * segment_size
end = (i + 1) * segment_size
gradient_parts.append(f"{color} {start}%, {color} {end}%")
gradient = f"linear-gradient(to right, {', '.join(gradient_parts)})"
# Create tooltip
tooltip_parts = []
for i, label in enumerate(labels):
tooltip_parts.append(f"{label} ({sources[i]}) - {confidences[i]:.2f}")
tooltip = " | ".join(tooltip_parts)
return (f''
f'{entity["text"]} 🔗')
def create_entity_table_html(entities, entity_colors):
"""Create HTML table of entities"""
if not entities:
return "No entities found.
"
# Merge overlapping entities
merged_entities = find_overlapping_entities(entities)
# Group entities by type
entity_groups = {}
for entity in merged_entities:
if entity.get('is_merged', False):
key = 'MERGED_ENTITIES'
else:
key = entity['label']
if key not in entity_groups:
entity_groups[key] = []
entity_groups[key].append(entity)
# Create HTML table
html = ""
for entity_type, entities_of_type in entity_groups.items():
if entity_type == 'MERGED_ENTITIES':
color = '#666666'
header = f"🔗 Merged Entities ({len(entities_of_type)})"
else:
color = entity_colors.get(entity_type.upper(), '#CCCCCC')
header = f"{entity_type} ({len(entities_of_type)})"
html += f"""
{header}
| Entity Text |
Label(s) |
Source(s) |
Confidence |
"""
for entity in entities_of_type:
if entity.get('is_merged', False):
labels_text = " | ".join(entity['labels'])
sources_text = " | ".join(entity['sources'])
conf_text = " | ".join([f"{c:.2f}" for c in entity['confidences']])
else:
labels_text = entity['label']
sources_text = entity['source']
conf_text = f"{entity['confidence']:.2f}"
html += f"""
| {entity['text']} |
{labels_text} |
{sources_text} |
{conf_text} |
"""
html += "
"
html += "
"
return html
def create_legend_html(entity_colors, standard_entities, custom_entities):
"""Create a legend showing entity colors"""
if not entity_colors:
return ""
html = ""
html += "
🎨 Entity Type Legend
"
if standard_entities:
html += "
"
html += "
🎯 Standard Entities:
"
html += "
"
for entity_type in standard_entities:
color = entity_colors.get(entity_type.upper(), '#ccc')
html += f"{entity_type}"
html += "
"
if custom_entities:
html += "
"
html += "
✨ Custom Entities:
"
html += "
"
for entity_type in custom_entities:
color = entity_colors.get(entity_type.upper(), '#ccc')
html += f"{entity_type}"
html += "
"
html += "
"
return html
# Initialize the NER manager
ner_manager = HybridNERManager()
def process_text(text, standard_entities, custom_entities_str, confidence_threshold, use_spacy, use_gliner_standard):
"""Main processing function for Gradio interface"""
if not text.strip():
return "❌ Please enter some text to analyze", "", ""
# Parse custom entities
custom_entities = []
if custom_entities_str.strip():
custom_entities = [entity.strip() for entity in custom_entities_str.split(',') if entity.strip()]
# Parse standard entities
selected_standard = [entity for entity in standard_entities if entity]
if not selected_standard and not custom_entities:
return "❌ Please select at least one standard entity type OR enter custom entity types", "", ""
all_entities = []
# Extract standard entities
if selected_standard:
if use_spacy:
spacy_entities = ner_manager.extract_spacy_entities(text, selected_standard)
all_entities.extend(spacy_entities)
if use_gliner_standard:
gliner_standard_entities = ner_manager.extract_gliner_entities(text, selected_standard, confidence_threshold, is_custom=False)
all_entities.extend(gliner_standard_entities)
# Extract custom entities
if custom_entities:
custom_entity_results = ner_manager.extract_gliner_entities(text, custom_entities, confidence_threshold, is_custom=True)
all_entities.extend(custom_entity_results)
if not all_entities:
return "❌ No entities found. Try lowering the confidence threshold or using different entity types.", "", ""
# Assign colors
entity_colors = ner_manager.assign_colors(selected_standard, custom_entities)
# Create outputs
legend_html = create_legend_html(entity_colors, selected_standard, custom_entities)
highlighted_html = create_highlighted_html(text, all_entities, entity_colors)
table_html = create_entity_table_html(all_entities, entity_colors)
# Create summary
total_entities = len(all_entities)
merged_entities = find_overlapping_entities(all_entities)
final_count = len(merged_entities)
merged_count = sum(1 for e in merged_entities if e.get('is_merged', False))
summary = f"""
## 📊 Analysis Summary
- **Total entities found:** {total_entities}
- **Final entities displayed:** {final_count}
- **Merged entities:** {merged_count}
- **Average confidence:** {sum(e.get('confidence', 0) for e in all_entities) / total_entities:.3f}
"""
return summary, legend_html + highlighted_html, table_html
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Hybrid NER + GLiNER Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎯 Hybrid NER + Custom GLiNER Entity Recognition Tool
Combine standard NER categories with your own custom entity types! This tool uses both traditional NER models and GLiNER for comprehensive entity extraction.
## 🔗 NEW: Overlapping entities are automatically merged with split-color highlighting!
### How to use:
1. **📝 Enter your text** in the text area below
2. **🎯 Select standard entities** you want to find (PER, ORG, LOC, etc.)
3. **✨ Add custom entities** (comma-separated) like "relationships, occupations, skills"
4. **⚙️ Choose models** and adjust confidence threshold
5. **🔍 Click "Analyze Text"** to see results
""")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="📝 Text to Analyze",
placeholder="Enter your text here...",
lines=6,
max_lines=10
)
with gr.Column(scale=1):
confidence_threshold = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.3,
step=0.1,
label="🎚️ Confidence Threshold"
)
with gr.Row():
with gr.Column():
gr.Markdown("### 🎯 Standard Entity Types")
standard_entities = gr.CheckboxGroup(
choices=STANDARD_ENTITIES,
value=['PER', 'ORG', 'LOC', 'MISC'], # Default selection
label="Select Standard Entities"
)
with gr.Row():
use_spacy = gr.Checkbox(label="Use spaCy", value=True)
use_gliner_standard = gr.Checkbox(label="Use GLiNER for Standard", value=False)
with gr.Column():
gr.Markdown("### ✨ Custom Entity Types")
custom_entities = gr.Textbox(
label="Custom Entities (comma-separated)",
placeholder="e.g. relationships, occupations, skills, emotions",
lines=3
)
gr.Markdown("""
**Examples:**
- relationships, occupations, skills
- emotions, actions, objects
- medical conditions, treatments
""")
analyze_btn = gr.Button("🔍 Analyze Text", variant="primary", size="lg")
# Output sections
with gr.Row():
summary_output = gr.Markdown(label="Summary")
with gr.Row():
highlighted_output = gr.HTML(label="Highlighted Text")
with gr.Row():
table_output = gr.HTML(label="Detailed Results")
# Connect the button to the processing function
analyze_btn.click(
fn=process_text,
inputs=[
text_input,
standard_entities,
custom_entities,
confidence_threshold,
use_spacy,
use_gliner_standard
],
outputs=[summary_output, highlighted_output, table_output]
)
# Add examples
gr.Examples(
examples=[
[
"John Smith works at Google in New York. He graduated from Stanford University in 2015 and specializes in artificial intelligence research. His wife Sarah is a doctor at Mount Sinai Hospital.",
["PER", "ORG", "LOC", "DATE"],
"relationships, occupations, educational background",
0.3,
True,
False
],
[
"The meeting between CEO Jane Doe and the board of directors at Microsoft headquarters in Seattle discussed the Q4 financial results and the new AI strategy for 2024.",
["PER", "ORG", "LOC", "DATE"],
"corporate roles, business events, financial terms",
0.4,
True,
True
]
],
inputs=[
text_input,
standard_entities,
custom_entities,
confidence_threshold,
use_spacy,
use_gliner_standard
]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()