Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText
|
4 |
+
import torch
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
model_path = "nanonets/Nanonets-OCR-s"
|
8 |
+
|
9 |
+
# Load model once at startup
|
10 |
+
print("Loading Nanonets OCR model...")
|
11 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
12 |
+
model_path,
|
13 |
+
torch_dtype="auto",
|
14 |
+
device_map="auto",
|
15 |
+
attn_implementation="flash_attention_2"
|
16 |
+
)
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
21 |
+
print("Model loaded successfully!")
|
22 |
+
|
23 |
+
|
24 |
+
def process_tags(content: str) -> str:
|
25 |
+
content = content.replace("<img>", "<img>")
|
26 |
+
content = content.replace("</img>", "</img>")
|
27 |
+
content = content.replace("<watermark>", "<watermark>")
|
28 |
+
content = content.replace("</watermark>", "</watermark>")
|
29 |
+
content = content.replace("<page_number>", "<page_number>")
|
30 |
+
content = content.replace("</page_number>", "</page_number>")
|
31 |
+
content = content.replace("<signature>", "<signature>")
|
32 |
+
content = content.replace("</signature>", "</signature>")
|
33 |
+
|
34 |
+
return content
|
35 |
+
|
36 |
+
@spaces.GPU()
|
37 |
+
def ocr_image_gradio(image, max_tokens=4096):
|
38 |
+
"""Process image through Nanonets OCR model for Gradio interface"""
|
39 |
+
if image is None:
|
40 |
+
return "Please upload an image."
|
41 |
+
|
42 |
+
try:
|
43 |
+
prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using β and β for check boxes."""
|
44 |
+
|
45 |
+
# Convert PIL image if needed
|
46 |
+
if not isinstance(image, Image.Image):
|
47 |
+
image = Image.fromarray(image)
|
48 |
+
|
49 |
+
messages = [
|
50 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
51 |
+
{"role": "user", "content": [
|
52 |
+
{"type": "image", "image": image},
|
53 |
+
{"type": "text", "text": prompt},
|
54 |
+
]},
|
55 |
+
]
|
56 |
+
|
57 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
58 |
+
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
|
59 |
+
inputs = inputs.to(model.device)
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
output_ids = model.generate(**inputs, max_new_tokens=max_tokens, do_sample=False)
|
63 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
|
64 |
+
|
65 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
66 |
+
return process_tags(output_text[0])
|
67 |
+
|
68 |
+
except Exception as e:
|
69 |
+
return f"Error processing image: {str(e)}"
|
70 |
+
|
71 |
+
# Create Gradio interface
|
72 |
+
with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
73 |
+
# Replace simple markdown with styled HTML header that includes resources
|
74 |
+
gr.HTML("""
|
75 |
+
<div class="title" style="text-align: center">
|
76 |
+
<h1>π Nanonets OCR - Document Text Extraction</h1>
|
77 |
+
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
78 |
+
A model for transforming documents into structured markdown with intelligent content recognition and semantic tagging
|
79 |
+
</p>
|
80 |
+
<div style="display: flex; justify-content: center; gap: 20px; margin: 15px 0;">
|
81 |
+
<a href="https://huggingface.co/nanonets/Nanonets-OCR-s" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
|
82 |
+
π Hugging Face Model
|
83 |
+
</a>
|
84 |
+
<a href="https://nanonets.com/research/nanonets-ocr-s/" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
|
85 |
+
π Release Blog
|
86 |
+
</a>
|
87 |
+
<a href="https://github.com/NanoNets/docext" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
|
88 |
+
π» GitHub Repository
|
89 |
+
</a>
|
90 |
+
</div>
|
91 |
+
</div>
|
92 |
+
""")
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Column(scale=1):
|
96 |
+
image_input = gr.Image(
|
97 |
+
label="Upload Document Image",
|
98 |
+
type="pil",
|
99 |
+
height=400
|
100 |
+
)
|
101 |
+
max_tokens_slider = gr.Slider(
|
102 |
+
minimum=1024,
|
103 |
+
maximum=8192,
|
104 |
+
value=4096,
|
105 |
+
step=512,
|
106 |
+
label="Max Tokens",
|
107 |
+
info="Maximum number of tokens to generate"
|
108 |
+
)
|
109 |
+
extract_btn = gr.Button("Extract Text", variant="primary", size="lg")
|
110 |
+
|
111 |
+
with gr.Column(scale=2):
|
112 |
+
output_text = gr.Markdown(
|
113 |
+
label="Formatted model prediction",
|
114 |
+
latex_delimiters=[
|
115 |
+
{"left": "$$", "right": "$$", "display": True},
|
116 |
+
{"left": "$", "right": "$", "display": False},
|
117 |
+
{
|
118 |
+
"left": "\\begin{align*}",
|
119 |
+
"right": "\\end{align*}",
|
120 |
+
"display": True,
|
121 |
+
},
|
122 |
+
],
|
123 |
+
line_breaks=True,
|
124 |
+
show_copy_button=True,
|
125 |
+
)
|
126 |
+
|
127 |
+
# Event handlers
|
128 |
+
extract_btn.click(
|
129 |
+
fn=ocr_image_gradio,
|
130 |
+
inputs=[image_input, max_tokens_slider],
|
131 |
+
outputs=output_text,
|
132 |
+
show_progress=True
|
133 |
+
)
|
134 |
+
|
135 |
+
image_input.change(
|
136 |
+
fn=ocr_image_gradio,
|
137 |
+
inputs=[image_input, max_tokens_slider],
|
138 |
+
outputs=output_text,
|
139 |
+
show_progress=True
|
140 |
+
)
|
141 |
+
|
142 |
+
# Add model information section
|
143 |
+
with gr.Accordion("About Nanonets-OCR-s", open=False):
|
144 |
+
gr.Markdown("""
|
145 |
+
## Nanonets-OCR-s
|
146 |
+
|
147 |
+
Nanonets-OCR-s is a powerful, state-of-the-art image-to-markdown OCR model that goes far beyond traditional text extraction.
|
148 |
+
It transforms documents into structured markdown with intelligent content recognition and semantic tagging, making it ideal
|
149 |
+
for downstream processing by Large Language Models (LLMs).
|
150 |
+
|
151 |
+
### Key Features
|
152 |
+
|
153 |
+
- **LaTeX Equation Recognition**: Automatically converts mathematical equations and formulas into properly formatted LaTeX syntax.
|
154 |
+
It distinguishes between inline ($...$) and display ($$...$$) equations.
|
155 |
+
|
156 |
+
- **Intelligent Image Description**: Describes images within documents using structured `<img>` tags, making them digestible
|
157 |
+
for LLM processing. It can describe various image types, including logos, charts, graphs and so on, detailing their content,
|
158 |
+
style, and context.
|
159 |
+
|
160 |
+
- **Signature Detection & Isolation**: Identifies and isolates signatures from other text, outputting them within a `<signature>` tag.
|
161 |
+
This is crucial for processing legal and business documents.
|
162 |
+
|
163 |
+
- **Watermark Extraction**: Detects and extracts watermark text from documents, placing it within a `<watermark>` tag.
|
164 |
+
|
165 |
+
- **Smart Checkbox Handling**: Converts form checkboxes and radio buttons into standardized Unicode symbols (β, β, β)
|
166 |
+
for consistent and reliable processing.
|
167 |
+
|
168 |
+
- **Complex Table Extraction**: Accurately extracts complex tables from documents and converts them into both markdown
|
169 |
+
and HTML table formats.
|
170 |
+
""")
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
demo.queue().launch()
|