Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from PIL import Image
|
|
3 |
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
|
4 |
import torch
|
5 |
import spaces
|
6 |
-
import
|
7 |
|
8 |
model_path = "nanonets/Nanonets-OCR-s"
|
9 |
|
@@ -62,40 +62,37 @@ def ocr_image_gradio_stream(image, max_tokens=4096):
|
|
62 |
|
63 |
# Set up streaming
|
64 |
streamer = TextIteratorStreamer(
|
65 |
-
tokenizer
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
)
|
70 |
|
71 |
generation_kwargs = {
|
72 |
**inputs,
|
73 |
"max_new_tokens": max_tokens,
|
74 |
"do_sample": False,
|
75 |
-
"streamer": streamer
|
76 |
}
|
77 |
|
78 |
# Start generation in a separate thread
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
# Stream the
|
83 |
-
|
84 |
-
for
|
85 |
-
|
86 |
-
|
87 |
-
yield
|
88 |
|
89 |
-
# Ensure thread completes
|
90 |
-
generation_thread.join()
|
91 |
-
|
92 |
except Exception as e:
|
93 |
yield f"Error processing image: {str(e)}"
|
94 |
|
95 |
-
#
|
96 |
@spaces.GPU()
|
97 |
def ocr_image_gradio(image, max_tokens=4096):
|
98 |
-
"""Process image through Nanonets OCR model for Gradio interface"""
|
99 |
if image is None:
|
100 |
return "Please upload an image."
|
101 |
|
@@ -148,9 +145,6 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
148 |
π» GitHub Repository
|
149 |
</a>
|
150 |
</div>
|
151 |
-
<p style="font-size: 0.9em; color: #10b981; font-weight: 500;">
|
152 |
-
β¨ Now with streaming output and support for 4 concurrent uploads!
|
153 |
-
</p>
|
154 |
</div>
|
155 |
""")
|
156 |
|
@@ -171,16 +165,9 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
171 |
)
|
172 |
extract_btn = gr.Button("Extract Text", variant="primary", size="lg")
|
173 |
|
174 |
-
gr.Markdown("""
|
175 |
-
**π‘ Tips:**
|
176 |
-
- Upload supports concurrent processing of up to 4 images
|
177 |
-
- Results stream in real-time as they're generated
|
178 |
-
- Automatic processing starts when you upload an image
|
179 |
-
""")
|
180 |
-
|
181 |
with gr.Column(scale=2):
|
182 |
output_text = gr.Markdown(
|
183 |
-
label="
|
184 |
latex_delimiters=[
|
185 |
{"left": "$$", "right": "$$", "display": True},
|
186 |
{"left": "$", "right": "$", "display": False},
|
@@ -194,7 +181,7 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
194 |
show_copy_button=True,
|
195 |
)
|
196 |
|
197 |
-
# Event handlers
|
198 |
extract_btn.click(
|
199 |
fn=ocr_image_gradio_stream,
|
200 |
inputs=[image_input, max_tokens_slider],
|
@@ -240,14 +227,4 @@ for downstream processing by Large Language Models (LLMs).
|
|
240 |
""")
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
-
|
244 |
-
demo.queue(
|
245 |
-
max_size=1000, # Maximum queue size
|
246 |
-
default_concurrency_limit=4, # Allow 4 concurrent requests
|
247 |
-
status_update_rate=0.1, # Update status every 100ms for better streaming experience
|
248 |
-
).launch(
|
249 |
-
server_name="0.0.0.0",
|
250 |
-
server_port=7860,
|
251 |
-
show_error=True,
|
252 |
-
share=False
|
253 |
-
)
|
|
|
3 |
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
|
4 |
import torch
|
5 |
import spaces
|
6 |
+
from threading import Thread
|
7 |
|
8 |
model_path = "nanonets/Nanonets-OCR-s"
|
9 |
|
|
|
62 |
|
63 |
# Set up streaming
|
64 |
streamer = TextIteratorStreamer(
|
65 |
+
tokenizer,
|
66 |
+
timeout=60.0,
|
67 |
+
skip_prompt=True,
|
68 |
+
skip_special_tokens=True
|
69 |
)
|
70 |
|
71 |
generation_kwargs = {
|
72 |
**inputs,
|
73 |
"max_new_tokens": max_tokens,
|
74 |
"do_sample": False,
|
75 |
+
"streamer": streamer
|
76 |
}
|
77 |
|
78 |
# Start generation in a separate thread
|
79 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
80 |
+
thread.start()
|
81 |
|
82 |
+
# Stream the results
|
83 |
+
generated_text = ""
|
84 |
+
for new_text in streamer:
|
85 |
+
generated_text += new_text
|
86 |
+
processed_text = process_tags(generated_text)
|
87 |
+
yield processed_text
|
88 |
|
|
|
|
|
|
|
89 |
except Exception as e:
|
90 |
yield f"Error processing image: {str(e)}"
|
91 |
|
92 |
+
# Keep the original function for non-streaming use if needed
|
93 |
@spaces.GPU()
|
94 |
def ocr_image_gradio(image, max_tokens=4096):
|
95 |
+
"""Process image through Nanonets OCR model for Gradio interface (non-streaming)"""
|
96 |
if image is None:
|
97 |
return "Please upload an image."
|
98 |
|
|
|
145 |
π» GitHub Repository
|
146 |
</a>
|
147 |
</div>
|
|
|
|
|
|
|
148 |
</div>
|
149 |
""")
|
150 |
|
|
|
165 |
)
|
166 |
extract_btn = gr.Button("Extract Text", variant="primary", size="lg")
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
with gr.Column(scale=2):
|
169 |
output_text = gr.Markdown(
|
170 |
+
label="Formatted model prediction",
|
171 |
latex_delimiters=[
|
172 |
{"left": "$$", "right": "$$", "display": True},
|
173 |
{"left": "$", "right": "$", "display": False},
|
|
|
181 |
show_copy_button=True,
|
182 |
)
|
183 |
|
184 |
+
# Event handlers - Updated to use streaming
|
185 |
extract_btn.click(
|
186 |
fn=ocr_image_gradio_stream,
|
187 |
inputs=[image_input, max_tokens_slider],
|
|
|
227 |
""")
|
228 |
|
229 |
if __name__ == "__main__":
|
230 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|