Spaces:
Sleeping
Sleeping
File size: 10,068 Bytes
ebc58e9 2b37d5e ebc58e9 2b37d5e ebc58e9 2b37d5e ebc58e9 2b37d5e ebc58e9 2b37d5e ebc58e9 2b37d5e ebc58e9 2b37d5e ebc58e9 063869c ebc58e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import warnings
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
warnings.filterwarnings("ignore")
# Load the dataset
df = pd.read_csv(r"data.csv")
df.fillna(df.mean(), inplace=True)
# Create Tabs
tab1, tab2, tab3 = st.tabs(["π Project Overview", "π EDA", "π Fault Prediction"])
# ----------------------------- TAB 1 ---------------------------------
with tab1:
st.header("π Brake System Fault Detection")
st.markdown("### π§© Business Problem")
st.markdown("""
In the automotive industry, ensuring the safety and reliability of braking systems is **mission-critical**. Traditional brake inspections are typically **manual and reactive**, often identifying problems **only after they occur** or during scheduled maintenance.
However, undetected faults in braking systems can lead to:
- **Brake failure during operation**
- **Reduced vehicle control**
- **Increased risk of accidents**
- **Expensive emergency repairs**
Manufacturers and fleet managers need a **real-time fault detection system** using **sensor data** to:
- Monitor brake system health continuously
- **Predict faults proactively**
- **Minimize vehicle downtime**
- Enhance **safety, reliability, and cost-efficiency**
""")
feature_desc = {
'Brake_Pressure': "Pressure applied to the brake pedal.",
'Pad_Wear_Level': "Indicates the wear level of brake pads.",
'ABS_Status': "1 if Anti-lock Braking System is active, else 0.",
'Wheel_Speed_FL': "Speed of the front-left wheel.",
'Wheel_Speed_FR': "Speed of the front-right wheel.",
'Wheel_Speed_RL': "Speed of the rear-left wheel.",
'Wheel_Speed_RR': "Speed of the rear-right wheel.",
'Fluid_Temperature': "Temperature of the brake fluid.",
'Pedal_Position': "How far the brake pedal is pressed."
}
selected = st.selectbox("Select a feature to understand:", list(feature_desc.keys()))
st.info(f"π **{selected}**: {feature_desc[selected]}")
# π― Goal
st.markdown("### π― Goal")
st.markdown("""
Build a data-driven model that detects braking system faults using sensor data such as brake pressure, wheel speeds, fluid temperature, and pedal position.
""")
# πΌ Business Objective
st.markdown("### π Business Objective")
st.markdown("""
- Detect faults early to reduce vehicle failure risks.
- Analyze sensor behavior during fault vs non-fault conditions.
- Support preventive maintenance using historical data patterns.
""")
st.markdown("### π Data Understanding")
st.markdown("""
The dataset contains **real-time sensor readings** collected from a vehicle's braking system to detect faults.
#### π’ Numerical Features:
- **Brake_Pressure**
- **Pad_Wear_Level**
- **Wheel_Speed_FL**, **Wheel_Speed_FR**, **Wheel_Speed_RL**, **Wheel_Speed_RR**
- **Fluid_Temperature**
- **Pedal_Position**
#### π Categorical Feature:
- **ABS_Status**: `1` = Active, `0` = Inactive
#### π― Target Variable:
- **Fault**: `1` = Fault Detected, `0` = No Fault
""")
# ----------------------------- TAB 2 ---------------------------------
with tab2:
st.title("π Exploratory Data Analysis")
st.subheader("π View Dataset Preview")
if st.button("π Show Dataset Head"):
st.dataframe(df.head()) # Displays the first few rows to understand the data format and structure
st.subheader("β οΈ Fault Distribution")
fault_counts = df['Fault'].value_counts()
st.bar_chart(fault_counts) # Insight: Helps us understand class imbalance. If faults are rare, classification might need balancing.
st.write(df['Fault'].value_counts(normalize=True) * 100) # Insight: Shows percentage distribution of Fault vs Normal.
st.subheader("π Correlation Heatmap")
corr = df.corr()
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax)
st.pyplot(fig)
# Insight: Shows correlation between features. Helps identify multicollinearity (e.g., front and rear wheel speeds may be strongly correlated).
st.markdown("### π Feature Distributions by Fault")
features = ['Brake_Pressure', 'Pad_Wear_Level', 'Wheel_Speed_FL', 'Wheel_Speed_FR',
'Wheel_Speed_RL', 'Wheel_Speed_RR', 'Fluid_Temperature', 'Pedal_Position']
for feature in features:
st.markdown(f"#### π {feature}")
fig, ax = plt.subplots()
sns.kdeplot(data=df, x=feature, hue="Fault", fill=True, common_norm=False, alpha=0.4, ax=ax)
st.pyplot(fig)
# Insight: Helps compare how each feature behaves under Fault vs Normal.
# For example, if Faults have higher brake pressure, this plot will reveal it through overlapping or shifting distributions.
st.markdown("### π¦ Boxplots to Compare Fault vs Normal")
for feature in features:
st.markdown(f"#### π¦ {feature} vs Fault")
fig, ax = plt.subplots()
sns.boxplot(data=df, x='Fault', y=feature, palette="Set2", ax=ax)
st.pyplot(fig)
# Insight: Boxplots show outliers, spread, and median differences between Fault and No Fault.
# Useful to detect features with significant variance or skew in faulty cases.
st.markdown("### π Scatterplots: Detect Patterns or Anomalies")
st.markdown("These help you check combinations of features with color-coded fault info.")
fig, ax = plt.subplots()
sns.scatterplot(data=df, x="Brake_Pressure", y="Pad_Wear_Level", hue="Fault", palette="Set1", ax=ax)
ax.set_title("Brake Pressure vs Pad Wear Level")
st.pyplot(fig)
# Insight: Shows relationship between brake pressure and pad wear.
# You may find that high pressure and high wear are often associated with faults.
fig, ax = plt.subplots()
sns.scatterplot(data=df, x="Pedal_Position", y="Fluid_Temperature", hue="Fault", palette="Set2", ax=ax)
ax.set_title("Pedal Position vs Fluid Temperature")
st.pyplot(fig)
# Insight: Helps detect abnormal combinations (e.g., high pedal position with low fluid temperature) that could indicate a fault.
# ----------------------------- TAB 3 ---------------------------------
with tab3:
st.markdown(
"""
<style>
.stApp {
background-color: #e6f2ff;
padding: 12px;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown("## π Vehicle Brake System Fault Detection")
st.markdown("#### Enter Brake Sensor Values to Predict Any System Fault")
# Prepare data
X = df.drop("Fault", axis=1)
y = df["Fault"]
# UI for user input
Brake_Pressure = st.slider("π¨ Brake Pressure (psi)", 50.0, 500.0, step=0.1)
Pad_Wear_Level = st.slider("π Pad Wear Level (%)", 0.0, 100.0, step=0.1)
ABS_Status = st.slider("π ABS Status (0 = Off, 1 = On)", 0, 1, step=1)
Wheel_Speed_FL = st.slider("βοΈ Wheel Speed FL (km/h)", 0.0, 400.0, step=0.1)
Wheel_Speed_FR = st.slider("βοΈ Wheel Speed FR (km/h)", 0.0, 400.0, step=0.1)
Wheel_Speed_RL = st.slider("βοΈ Wheel Speed RL (km/h)", 0.0, 300.0, step=0.1)
Wheel_Speed_RR = st.slider("βοΈ Wheel Speed RR (km/h)", 0.0, 300.0, step=0.1)
Fluid_Temperature = st.slider("π‘οΈ Fluid Temperature (Β°C)", -20.0, 150.0, step=0.1)
Pedal_Position = st.slider("π¦Ά Pedal Position (%)", 0.0, 100.0, step=0.1)
# Train model
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=29)
model = LogisticRegression()
model.fit(x_train, y_train)
user_input = pd.DataFrame([[Brake_Pressure, Pad_Wear_Level, ABS_Status, Wheel_Speed_FL,
Wheel_Speed_FR, Wheel_Speed_RL, Wheel_Speed_RR,
Fluid_Temperature, Pedal_Position]],
columns=X.columns)
if st.button("π Predict Brake Fault"):
y_pred = model.predict(user_input)
prob = model.predict_proba(user_input)[0][1]
if y_pred[0] == 1:
st.error(f"π¨ Fault Detected in Brake System! (Confidence: {prob:.2%})")
issues = []
if Brake_Pressure < 60 or Brake_Pressure > 130:
issues.append("π΄ Abnormal Brake Pressure")
if Pad_Wear_Level >= 80:
issues.append("π Brake Pads Critically Worn")
elif Pad_Wear_Level >= 60:
issues.append("π‘ Brake Pads Heavily Worn")
if ABS_Status == 0:
issues.append("π΅ ABS System Not Active")
if Wheel_Speed_FL < 0 or Wheel_Speed_FL > 130:
issues.append("π΄ Front Left Wheel Speed Abnormal")
if Wheel_Speed_FR < 0 or Wheel_Speed_FR > 130:
issues.append("π΄ Front Right Wheel Speed Abnormal")
if Wheel_Speed_RL < 0 or Wheel_Speed_RL > 130:
issues.append("π΄ Rear Left Wheel Speed Abnormal")
if Wheel_Speed_RR < 0 or Wheel_Speed_RR > 130:
issues.append("π΄ Rear Right Wheel Speed Abnormal")
if Fluid_Temperature < -20 or Fluid_Temperature > 120:
issues.append("π₯ Abnormal Brake Fluid Temperature")
if 20 < Pedal_Position < 60:
issues.append("π‘ Moderate Brake Pedal Pressed")
if 60 <= Pedal_Position <= 100:
issues.append("π Brake Pedal Fully Pressed")
if Pedal_Position <= 20:
issues.append("π Low Brake Pedal Engagement")
for issue in issues:
st.markdown(f"- {issue}")
else:
st.success(f"β
No Fault Detected. (Confidence: {1 - prob:.2%})")
st.info("π Your vehicle's brake system appears healthy.")
|