|
import streamlit as st
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
import streamlit as st
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
|
|
df = pd.read_csv(r"C:\Users\91879\Downloads\data.csv")
|
|
|
|
st.title("π Exploratory Data Analysis")
|
|
|
|
|
|
|
|
df.fillna(df.mean(), inplace=True)
|
|
st.subheader("π View Dataset Preview")
|
|
|
|
if st.button("π Show Dataset Head"):
|
|
st.dataframe(df.head())
|
|
|
|
|
|
features = [
|
|
'Brake_Pressure', 'Pad_Wear_Level', 'ABS_Status',
|
|
'Wheel_Speed_FL', 'Wheel_Speed_FR',
|
|
'Wheel_Speed_RL', 'Wheel_Speed_RR',
|
|
'Fluid_Temperature', 'Pedal_Position'
|
|
]
|
|
|
|
st.subheader("β οΈ Fault Distribution")
|
|
fault_counts = df['Fault'].value_counts()
|
|
st.bar_chart(fault_counts)
|
|
st.write(df['Fault'].value_counts(normalize=True) * 100)
|
|
|
|
|
|
|
|
st.subheader("π Correlation Heatmap")
|
|
corr = df.corr()
|
|
fig, ax = plt.subplots(figsize=(10, 8))
|
|
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax)
|
|
st.pyplot(fig)
|
|
|
|
|
|
|
|
|