|
import streamlit as st |
|
import pandas as pd |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import sklearn |
|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
df = pd.read_csv(r"C:\Users\91879\Downloads\data.csv") |
|
|
|
st.title("π Exploratory Data Analysis") |
|
|
|
|
|
|
|
df.fillna(df.mean(), inplace=True) |
|
st.subheader("π View Dataset Preview") |
|
|
|
if st.button("π Show Dataset Head"): |
|
st.dataframe(df.head()) |
|
|
|
|
|
features = [ |
|
'Brake_Pressure', 'Pad_Wear_Level', 'ABS_Status', |
|
'Wheel_Speed_FL', 'Wheel_Speed_FR', |
|
'Wheel_Speed_RL', 'Wheel_Speed_RR', |
|
'Fluid_Temperature', 'Pedal_Position' |
|
] |
|
|
|
st.subheader("β οΈ Fault Distribution") |
|
fault_counts = df['Fault'].value_counts() |
|
st.bar_chart(fault_counts) |
|
st.write(df['Fault'].value_counts(normalize=True) * 100) |
|
|
|
|
|
|
|
st.subheader("π Correlation Heatmap") |
|
corr = df.corr() |
|
fig, ax = plt.subplots(figsize=(10, 8)) |
|
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax) |
|
st.pyplot(fig) |
|
|
|
|
|
|
|
|