|
import streamlit as st |
|
import pandas as pd |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import sklearn |
|
import warnings |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import accuracy_score |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
df = pd.read_csv(r"data.csv") |
|
df.fillna(df.mean(), inplace=True) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["π Project Overview", "π EDA", "π Fault Prediction"]) |
|
|
|
|
|
with tab1: |
|
st.header("π Brake System Fault Detection") |
|
st.markdown("### π§© Business Problem") |
|
|
|
st.markdown(""" |
|
In the automotive industry, ensuring the safety and reliability of braking systems is **mission-critical**. Traditional brake inspections are typically **manual and reactive**, often identifying problems **only after they occur** or during scheduled maintenance. |
|
|
|
However, undetected faults in braking systems can lead to: |
|
- **Brake failure during operation** |
|
- **Reduced vehicle control** |
|
- **Increased risk of accidents** |
|
- **Expensive emergency repairs** |
|
|
|
Manufacturers and fleet managers need a **real-time fault detection system** using **sensor data** to: |
|
- Monitor brake system health continuously |
|
- **Predict faults proactively** |
|
- **Minimize vehicle downtime** |
|
- Enhance **safety, reliability, and cost-efficiency** |
|
""") |
|
|
|
|
|
feature_desc = { |
|
'Brake_Pressure': "Pressure applied to the brake pedal.", |
|
'Pad_Wear_Level': "Indicates the wear level of brake pads.", |
|
'ABS_Status': "1 if Anti-lock Braking System is active, else 0.", |
|
'Wheel_Speed_FL': "Speed of the front-left wheel.", |
|
'Wheel_Speed_FR': "Speed of the front-right wheel.", |
|
'Wheel_Speed_RL': "Speed of the rear-left wheel.", |
|
'Wheel_Speed_RR': "Speed of the rear-right wheel.", |
|
'Fluid_Temperature': "Temperature of the brake fluid.", |
|
'Pedal_Position': "How far the brake pedal is pressed." |
|
} |
|
|
|
selected = st.selectbox("Select a feature to understand:", list(feature_desc.keys())) |
|
st.info(f"π **{selected}**: {feature_desc[selected]}") |
|
|
|
|
|
st.markdown("### π― Goal") |
|
st.markdown(""" |
|
Build a data-driven model that detects braking system faults using sensor data such as brake pressure, wheel speeds, fluid temperature, and pedal position. |
|
""") |
|
|
|
|
|
st.markdown("### π Business Objective") |
|
st.markdown(""" |
|
- Detect faults early to reduce vehicle failure risks. |
|
- Analyze sensor behavior during fault vs non-fault conditions. |
|
- Support preventive maintenance using historical data patterns. |
|
""") |
|
|
|
st.markdown("### π Data Understanding") |
|
st.markdown(""" |
|
The dataset contains **real-time sensor readings** collected from a vehicle's braking system to detect faults. |
|
|
|
#### π’ Numerical Features: |
|
- **Brake_Pressure** |
|
- **Pad_Wear_Level** |
|
- **Wheel_Speed_FL**, **Wheel_Speed_FR**, **Wheel_Speed_RL**, **Wheel_Speed_RR** |
|
- **Fluid_Temperature** |
|
- **Pedal_Position** |
|
|
|
#### π Categorical Feature: |
|
- **ABS_Status**: `1` = Active, `0` = Inactive |
|
|
|
#### π― Target Variable: |
|
- **Fault**: `1` = Fault Detected, `0` = No Fault |
|
""") |
|
|
|
|
|
with tab2: |
|
st.title("π Exploratory Data Analysis") |
|
|
|
st.subheader("π View Dataset Preview") |
|
if st.button("π Show Dataset Head"): |
|
st.dataframe(df.head()) |
|
|
|
st.subheader("β οΈ Fault Distribution") |
|
fault_counts = df['Fault'].value_counts() |
|
st.bar_chart(fault_counts) |
|
st.write(df['Fault'].value_counts(normalize=True) * 100) |
|
|
|
st.subheader("π Correlation Heatmap") |
|
corr = df.corr() |
|
fig, ax = plt.subplots(figsize=(10, 8)) |
|
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax) |
|
st.pyplot(fig) |
|
|
|
st.markdown("### π Feature Distributions by Fault") |
|
features = ['Brake_Pressure', 'Pad_Wear_Level', 'Wheel_Speed_FL', 'Wheel_Speed_FR', |
|
'Wheel_Speed_RL', 'Wheel_Speed_RR', 'Fluid_Temperature', 'Pedal_Position'] |
|
|
|
for feature in features: |
|
st.markdown(f"#### π {feature}") |
|
fig, ax = plt.subplots() |
|
sns.kdeplot(data=df, x=feature, hue="Fault", fill=True, common_norm=False, alpha=0.4, ax=ax) |
|
st.pyplot(fig) |
|
|
|
st.markdown("### π¦ Boxplots to Compare Fault vs Normal") |
|
for feature in features: |
|
st.markdown(f"#### π¦ {feature} vs Fault") |
|
fig, ax = plt.subplots() |
|
sns.boxplot(data=df, x='Fault', y=feature, palette="Set2", ax=ax) |
|
st.pyplot(fig) |
|
|
|
st.markdown("### π Scatterplots: Detect Patterns or Anomalies") |
|
st.markdown("These help you check combinations of features with color-coded fault info.") |
|
|
|
fig, ax = plt.subplots() |
|
sns.scatterplot(data=df, x="Brake_Pressure", y="Pad_Wear_Level", hue="Fault", palette="Set1", ax=ax) |
|
ax.set_title("Brake Pressure vs Pad Wear Level") |
|
st.pyplot(fig) |
|
|
|
fig, ax = plt.subplots() |
|
sns.scatterplot(data=df, x="Pedal_Position", y="Fluid_Temperature", hue="Fault", palette="Set2", ax=ax) |
|
ax.set_title("Pedal Position vs Fluid Temperature") |
|
st.pyplot(fig) |
|
|
|
|
|
with tab3: |
|
st.markdown( |
|
""" |
|
<style> |
|
.stApp { |
|
background-color: #e3f2fd; |
|
padding: 12px; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
st.markdown("## π Vehicle Brake System Fault Detection") |
|
st.markdown("#### Enter Brake Sensor Values to Predict Any System Fault") |
|
|
|
|
|
X = df.drop("Fault", axis=1) |
|
y = df["Fault"] |
|
|
|
|
|
Brake_Pressure = st.slider("π¨ Brake Pressure (psi)", 50.0, 500.0, step=0.1) |
|
Pad_Wear_Level = st.slider("π Pad Wear Level (%)", 0.0, 100.0, step=0.1) |
|
ABS_Status = st.slider("π ABS Status (0 = Off, 1 = On)", 0, 1, step=1) |
|
Wheel_Speed_FL = st.slider("βοΈ Wheel Speed FL (km/h)", 0.0, 400.0, step=0.1) |
|
Wheel_Speed_FR = st.slider("βοΈ Wheel Speed FR (km/h)", 0.0, 400.0, step=0.1) |
|
Wheel_Speed_RL = st.slider("βοΈ Wheel Speed RL (km/h)", 0.0, 300.0, step=0.1) |
|
Wheel_Speed_RR = st.slider("βοΈ Wheel Speed RR (km/h)", 0.0, 300.0, step=0.1) |
|
Fluid_Temperature = st.slider("π‘οΈ Fluid Temperature (Β°C)", -20.0, 150.0, step=0.1) |
|
Pedal_Position = st.slider("π¦Ά Pedal Position (%)", 0.0, 100.0, step=0.1) |
|
|
|
|
|
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=29) |
|
model = LogisticRegression() |
|
model.fit(x_train, y_train) |
|
|
|
user_input = pd.DataFrame([[Brake_Pressure, Pad_Wear_Level, ABS_Status, Wheel_Speed_FL, |
|
Wheel_Speed_FR, Wheel_Speed_RL, Wheel_Speed_RR, |
|
Fluid_Temperature, Pedal_Position]], |
|
columns=X.columns) |
|
|
|
if st.button("π Predict Brake Fault"): |
|
y_pred = model.predict(user_input) |
|
prob = model.predict_proba(user_input)[0][1] |
|
|
|
if y_pred[0] == 1: |
|
st.error(f"π¨ Fault Detected in Brake System! (Confidence: {prob:.2%})") |
|
issues = [] |
|
|
|
if Brake_Pressure < 60 or Brake_Pressure > 130: |
|
issues.append("π΄ Abnormal Brake Pressure") |
|
|
|
if Pad_Wear_Level >= 80: |
|
issues.append("π Brake Pads Critically Worn") |
|
elif Pad_Wear_Level >= 60: |
|
issues.append("π‘ Brake Pads Heavily Worn") |
|
|
|
if ABS_Status == 0: |
|
issues.append("π΅ ABS System Not Active") |
|
|
|
if Wheel_Speed_FL < 0 or Wheel_Speed_FL > 130: |
|
issues.append("π΄ Front Left Wheel Speed Abnormal") |
|
if Wheel_Speed_FR < 0 or Wheel_Speed_FR > 130: |
|
issues.append("π΄ Front Right Wheel Speed Abnormal") |
|
if Wheel_Speed_RL < 0 or Wheel_Speed_RL > 130: |
|
issues.append("π΄ Rear Left Wheel Speed Abnormal") |
|
if Wheel_Speed_RR < 0 or Wheel_Speed_RR > 130: |
|
issues.append("π΄ Rear Right Wheel Speed Abnormal") |
|
|
|
if Fluid_Temperature < -20 or Fluid_Temperature > 120: |
|
issues.append("π₯ Abnormal Brake Fluid Temperature") |
|
|
|
if 20 < Pedal_Position < 60: |
|
issues.append("π‘ Moderate Brake Pedal Pressed") |
|
if 60 <= Pedal_Position <= 100: |
|
issues.append("π Brake Pedal Fully Pressed") |
|
if Pedal_Position <= 20: |
|
issues.append("π Low Brake Pedal Engagement") |
|
|
|
for issue in issues: |
|
st.markdown(f"- {issue}") |
|
|
|
else: |
|
st.success(f"β
No Fault Detected. (Confidence: {1 - prob:.2%})") |
|
st.info("π Your vehicle's brake system appears healthy.") |
|
|