Sowmith22's picture
Upload 3 files
d255b45 verified
raw
history blame
9.23 kB
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import warnings
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
warnings.filterwarnings("ignore")
# Load the dataset
df = pd.read_csv(r"C:\Users\91879\Downloads\data.csv")
df.fillna(df.mean(), inplace=True)
# Create Tabs
tab1, tab2, tab3 = st.tabs(["πŸ“˜ Project Overview", "πŸ“Š EDA", "πŸ” Fault Prediction"])
# ----------------------------- TAB 1 ---------------------------------
with tab1:
st.header("πŸš— Brake System Fault Detection")
st.markdown("### 🧩 Business Problem")
st.markdown("""
In the automotive industry, ensuring the safety and reliability of braking systems is **mission-critical**. Traditional brake inspections are typically **manual and reactive**, often identifying problems **only after they occur** or during scheduled maintenance.
However, undetected faults in braking systems can lead to:
- **Brake failure during operation**
- **Reduced vehicle control**
- **Increased risk of accidents**
- **Expensive emergency repairs**
Manufacturers and fleet managers need a **real-time fault detection system** using **sensor data** to:
- Monitor brake system health continuously
- **Predict faults proactively**
- **Minimize vehicle downtime**
- Enhance **safety, reliability, and cost-efficiency**
""")
feature_desc = {
'Brake_Pressure': "Pressure applied to the brake pedal.",
'Pad_Wear_Level': "Indicates the wear level of brake pads.",
'ABS_Status': "1 if Anti-lock Braking System is active, else 0.",
'Wheel_Speed_FL': "Speed of the front-left wheel.",
'Wheel_Speed_FR': "Speed of the front-right wheel.",
'Wheel_Speed_RL': "Speed of the rear-left wheel.",
'Wheel_Speed_RR': "Speed of the rear-right wheel.",
'Fluid_Temperature': "Temperature of the brake fluid.",
'Pedal_Position': "How far the brake pedal is pressed."
}
selected = st.selectbox("Select a feature to understand:", list(feature_desc.keys()))
st.info(f"πŸ“˜ **{selected}**: {feature_desc[selected]}")
# 🎯 Goal
st.markdown("### 🎯 Goal")
st.markdown("""
Build a data-driven model that detects braking system faults using sensor data such as brake pressure, wheel speeds, fluid temperature, and pedal position.
""")
# πŸ’Ό Business Objective
st.markdown("### πŸ“Œ Business Objective")
st.markdown("""
- Detect faults early to reduce vehicle failure risks.
- Analyze sensor behavior during fault vs non-fault conditions.
- Support preventive maintenance using historical data patterns.
""")
st.markdown("### πŸ“Š Data Understanding")
st.markdown("""
The dataset contains **real-time sensor readings** collected from a vehicle's braking system to detect faults.
#### πŸ”’ Numerical Features:
- **Brake_Pressure**
- **Pad_Wear_Level**
- **Wheel_Speed_FL**, **Wheel_Speed_FR**, **Wheel_Speed_RL**, **Wheel_Speed_RR**
- **Fluid_Temperature**
- **Pedal_Position**
#### πŸ”  Categorical Feature:
- **ABS_Status**: `1` = Active, `0` = Inactive
#### 🎯 Target Variable:
- **Fault**: `1` = Fault Detected, `0` = No Fault
""")
# ----------------------------- TAB 2 ---------------------------------
with tab2:
st.title("πŸ“Š Exploratory Data Analysis")
st.subheader("πŸ“„ View Dataset Preview")
if st.button("πŸ” Show Dataset Head"):
st.dataframe(df.head())
st.subheader("⚠️ Fault Distribution")
fault_counts = df['Fault'].value_counts()
st.bar_chart(fault_counts)
st.write(df['Fault'].value_counts(normalize=True) * 100)
st.subheader("πŸ“Š Correlation Heatmap")
corr = df.corr()
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax)
st.pyplot(fig)
st.markdown("### πŸ“‰ Feature Distributions by Fault")
features = ['Brake_Pressure', 'Pad_Wear_Level', 'Wheel_Speed_FL', 'Wheel_Speed_FR',
'Wheel_Speed_RL', 'Wheel_Speed_RR', 'Fluid_Temperature', 'Pedal_Position']
for feature in features:
st.markdown(f"#### πŸ” {feature}")
fig, ax = plt.subplots()
sns.kdeplot(data=df, x=feature, hue="Fault", fill=True, common_norm=False, alpha=0.4, ax=ax)
st.pyplot(fig)
st.markdown("### πŸ“¦ Boxplots to Compare Fault vs Normal")
for feature in features:
st.markdown(f"#### πŸ“¦ {feature} vs Fault")
fig, ax = plt.subplots()
sns.boxplot(data=df, x='Fault', y=feature, palette="Set2", ax=ax)
st.pyplot(fig)
st.markdown("### πŸ“ Scatterplots: Detect Patterns or Anomalies")
st.markdown("These help you check combinations of features with color-coded fault info.")
fig, ax = plt.subplots()
sns.scatterplot(data=df, x="Brake_Pressure", y="Pad_Wear_Level", hue="Fault", palette="Set1", ax=ax)
ax.set_title("Brake Pressure vs Pad Wear Level")
st.pyplot(fig)
fig, ax = plt.subplots()
sns.scatterplot(data=df, x="Pedal_Position", y="Fluid_Temperature", hue="Fault", palette="Set2", ax=ax)
ax.set_title("Pedal Position vs Fluid Temperature")
st.pyplot(fig)
# ----------------------------- TAB 3 ---------------------------------
with tab3:
st.markdown(
"""
<style>
.stApp {
background-color: #e3f2fd;
padding: 12px;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown("## πŸš— Vehicle Brake System Fault Detection")
st.markdown("#### Enter Brake Sensor Values to Predict Any System Fault")
# Prepare data
X = df.drop("Fault", axis=1)
y = df["Fault"]
# UI for user input
Brake_Pressure = st.slider("πŸ’¨ Brake Pressure (psi)", 50.0, 500.0, step=0.1)
Pad_Wear_Level = st.slider("πŸ›ž Pad Wear Level (%)", 0.0, 100.0, step=0.1)
ABS_Status = st.slider("πŸ›‘ ABS Status (0 = Off, 1 = On)", 0, 1, step=1)
Wheel_Speed_FL = st.slider("βš™οΈ Wheel Speed FL (km/h)", 0.0, 400.0, step=0.1)
Wheel_Speed_FR = st.slider("βš™οΈ Wheel Speed FR (km/h)", 0.0, 400.0, step=0.1)
Wheel_Speed_RL = st.slider("βš™οΈ Wheel Speed RL (km/h)", 0.0, 300.0, step=0.1)
Wheel_Speed_RR = st.slider("βš™οΈ Wheel Speed RR (km/h)", 0.0, 300.0, step=0.1)
Fluid_Temperature = st.slider("🌑️ Fluid Temperature (°C)", -20.0, 150.0, step=0.1)
Pedal_Position = st.slider("🦢 Pedal Position (%)", 0.0, 100.0, step=0.1)
# Train model
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=29)
model = LogisticRegression()
model.fit(x_train, y_train)
user_input = pd.DataFrame([[Brake_Pressure, Pad_Wear_Level, ABS_Status, Wheel_Speed_FL,
Wheel_Speed_FR, Wheel_Speed_RL, Wheel_Speed_RR,
Fluid_Temperature, Pedal_Position]],
columns=X.columns)
if st.button("πŸ” Predict Brake Fault"):
y_pred = model.predict(user_input)
prob = model.predict_proba(user_input)[0][1]
if y_pred[0] == 1:
st.error(f"🚨 Fault Detected in Brake System! (Confidence: {prob:.2%})")
issues = []
if Brake_Pressure < 60 or Brake_Pressure > 130:
issues.append("πŸ”΄ Abnormal Brake Pressure")
if Pad_Wear_Level >= 80:
issues.append("🟠 Brake Pads Critically Worn")
elif Pad_Wear_Level >= 60:
issues.append("🟑 Brake Pads Heavily Worn")
if ABS_Status == 0:
issues.append("πŸ”΅ ABS System Not Active")
if Wheel_Speed_FL < 0 or Wheel_Speed_FL > 130:
issues.append("πŸ”΄ Front Left Wheel Speed Abnormal")
if Wheel_Speed_FR < 0 or Wheel_Speed_FR > 130:
issues.append("πŸ”΄ Front Right Wheel Speed Abnormal")
if Wheel_Speed_RL < 0 or Wheel_Speed_RL > 130:
issues.append("πŸ”΄ Rear Left Wheel Speed Abnormal")
if Wheel_Speed_RR < 0 or Wheel_Speed_RR > 130:
issues.append("πŸ”΄ Rear Right Wheel Speed Abnormal")
if Fluid_Temperature < -20 or Fluid_Temperature > 120:
issues.append("πŸ”₯ Abnormal Brake Fluid Temperature")
if 20 < Pedal_Position < 60:
issues.append("🟑 Moderate Brake Pedal Pressed")
if 60 <= Pedal_Position <= 100:
issues.append("πŸ›‘ Brake Pedal Fully Pressed")
if Pedal_Position <= 20:
issues.append("πŸ” Low Brake Pedal Engagement")
for issue in issues:
st.markdown(f"- {issue}")
else:
st.success(f"βœ… No Fault Detected. (Confidence: {1 - prob:.2%})")
st.info("πŸš— Your vehicle's brake system appears healthy.")