Sowmith22's picture
Update EDA.py
85acae2 verified
raw
history blame
1.05 kB
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
import streamlit as st
import pandas as pd
import numpy as np
# Load the dataset
df = pd.read_csv(r"C:\Users\91879\Downloads\data.csv")
st.title("πŸ“Š Exploratory Data Analysis")
# Fill missing values
df.fillna(df.mean(), inplace=True)
st.subheader("πŸ“„ View Dataset Preview")
if st.button("πŸ” Show Dataset Head"):
st.dataframe(df.head())
features = [
'Brake_Pressure', 'Pad_Wear_Level', 'ABS_Status',
'Wheel_Speed_FL', 'Wheel_Speed_FR',
'Wheel_Speed_RL', 'Wheel_Speed_RR',
'Fluid_Temperature', 'Pedal_Position'
]
st.subheader("⚠️ Fault Distribution")
fault_counts = df['Fault'].value_counts()
st.bar_chart(fault_counts)
st.write(df['Fault'].value_counts(normalize=True) * 100)
st.subheader("πŸ“Š Correlation Heatmap")
corr = df.corr()
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax)
st.pyplot(fig)